

FP6-2004-27020

Access-eGov
Access to e-Government Services

Employing Semantic Technologies

Instrument: STREP

Thematic Priority:
SO 2.4.13 Strengthening the integration

of the ICT research effort in an enlarged Europe

D3.2 Access-eGov Components Functional
Descriptions

Start date of project: January 1, 2006 Duration: 36 months

Date of submission: March 30, 2007

Lead contractor for this deliverable: InterSoft, a. s.

Revision: Final 2.0

Dissemination level: PU

Acknowledgement: The Project is funded by
European Commission DG INFSO under the IST
programme, contract No. FP6-2004-27020.

Disclaimer: The content of this publication is the sole
responsibility of the authors, and in no way represents the
view of the European Commission or its services.

FP6-2004-27020 Access-eGov
Access to e-Government Services Employing Semantic Technologies

D3.2 Access-eGov Components Functional
Descriptions

Workpackage: WP3 Task: T3.3

Date of submission: March 30, 2007

Lead contractor for this deliverable: InterSoft, a. s.

Authors: Martin Tomášek (IS)
Marek Paralič (IS)
Karol Furdík (IS)
Lukasz Ryfa (EMA)
Dominik Smogór (EMA)
Andrzej Marciniak (EMA)
Stefan Dürbeck (UR)
Rolf Schillinger (UR)
Marek Skokan (TUK)
Peter Bednár (TUK)
Ján Hreňo (TUK)
Tomáš Sabol (TUK)

Version: 2.0

Revision Final

Dissemination level: PU

Project partners:

Technical University of Kosice (TUK), Slovakia (Coordinator); University of Regensburg (UR), Germany;
German University in Cairo (GUC, Egypt; InterSoft, a. s. (IS), Slovakia; EMAX S.A. (EMA), Poland; Kosice
Self-Governing Region (KSR), Slovakia; Cities on Internet Association (COI), Poland; e-ISOTIS (ISO), Greece;
Municipality of Michalovce (MI), Kosice; City Hall of Gliwice (GLI), Poland; State Government of Schleswig-
Holstein (SHG), Germany.

Abstract:
This document describes in detail the list of software modules and components that will
comprise the architecture in Access-eGov project. For each module we provide the definition,
the function it performs inside the overall architecture, the components needed to implement
the module, the relation between those components and their communication.

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Document Sign-off

Nature of Sign-
off

(Reviewed/Appr
oved/Submitted)

Name Role Participant short
name

Date

Reviewed Martin Tomášek TL IS Mar 30, 2007

Approved Martin Tomášek WPL IS Mar 30, 2007

Submitted Tomáš Sabol PM TUK Mar 30, 2007

Document Change Record

Date Version Contributor(s) Change Details

Oct 4, 2006 0.1 Marek Paralič (IS) First draft
 0.2 Lukasz Ryfa (EMA) Chapter 10
Oct 20, 2006 0.3 Martin Tomášek (IS) Chapter 8
Oct 20, 2006 0.4 Stefan Dürbeck (UR) Chapter 6
Oct 31, 2006 0.5 Lukasz Ryfa (EMA) Chapter 10 reviewed
Nov 1, 2006 0.6 Martin Tomášek (IS) Revision after meeting at UR
Nov 7, 2006 0.7 Dominik Smogór (EMA) Chapter 10
Nov 9, 2006 0.8 Stefan Dürbeck (UR) Chapter 6
Nov 10, 2006 0.9 Martin Tomášek (IS) Revision and merging of previous versions

Nov 10, 2006 0.10 Marek Skokan, Peter Bednár
(TUK) Chapters 5, 7, 8. Revision

Nov 10, 2006 0.11
Martin Tomášek (IS), Tomáš
Sabol (TUK), Peter Bednár
(TUK), Dominik Smogór (EMA)

Revision

Nov 10, 2006 1.0 Marek Skokan (TUK), Martin
Tomášek (IS) Added glossary

Mar 10, 2007 1.1 Martin Tomášek (IS) Rework of chapter 9 (all sections).

Martin Tomášek (IS) Added Executive Summary and short
description of changes in the Introduction Mar 17, 2007 1.2

Dominik Smogór (EMA),
Andrzej Marciniak (EMA) Revision of chapter 9 (all sections)

Rolf Schillinger (UR) Added annex A

Marek Skokan (TUK), Ján Hreňo
(TUK)

Rework of chapters 7 (all sections), 8 (all
sections except 8.2.2) and 10 (all sections
except 10.2.5 and 10.2.6)

Mar 21, 2007 1.3

Karol Furdík (IS), Marek Paralič
(IS)

Rework of chapters 5 (all sections), 8.2.2
and 10.2.6

Stefan Dürbeck (UR), Rolf
Schillinger (UR)

Rework of chapters 6 (all sections) and
10.2.5 Mar 25, 2007 1.4

Peter Bednár (TUK) Added chapters A.1 and A.2
Tomáš Sabol (TUK), Marek
Skokan (TUK), Peter Bednár
(TUK)

Changes in chapter 5, 10.2.2 and annex A,
revision of the text Mar 29, 2007 2.0

Karol Furdik (IS), Peter Bednár
(TUK) Changes in chapter 5.2.1.1 and 5.2.1.2

Files

Software Products User files / URL

Microsoft WORD

FP6-2004-27020 Page 3 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Content

EXECUTIVE SUMMARY .. 6

1 INTRODUCTION ... 7
1.1 OBJECTIVES AND SCOPE.. 7
1.2 DOCUMENT STRUCTURE ... 7

2 DEFINITIONS... 7
2.1 COMPONENT DEFINITION .. 7
2.2 MODULE DEFINITION .. 8

3 LOGICAL ARCHITECTURE... 8

4 MODULES... 10
4.1 INFORMATION PROVIDER RELATED MODULES... 10
4.2 INFORMATION CONSUMER RELATED MODULES ... 10
4.3 SYSTEM MANAGEMENT RELATED MODULES ... 10

5 SERVICE ANNOTATION MODULE.. 10
5.1 MODULE NAME AND FUNCTIONALITY... 10
5.2 SOFTWARE COMPONENTS ... 12

5.2.1 Service annotation component .. 12
5.2.2 Life events and goals management component ... 14
5.2.3 Ontology management component .. 15

6 SERVICE DISCOVERY MODULE.. 16
6.1 MODULE NAME AND FUNCTIONALITY... 16
6.2 SOFTWARE COMPONENTS ... 17

6.2.1 Full-text search component ... 18
6.2.2 Matching component ... 18
6.2.3 Filtering component .. 19
6.2.4 Reasoning component ... 20
6.2.5 Mediation component.. 20

6.3 SOFTWARE COMPONENTS SEQUENCE DIAGRAM .. 21
7 SERVICE COMPOSITION MODULE .. 25

7.1 MODULE NAME AND FUNCTIONALITY... 25
7.2 SOFTWARE COMPONENTS ... 26

7.2.1 Resolving component .. 27
7.2.2 Chaining component ... 28

7.3 SOFTWARE COMPONENTS SEQUENCE DIAGRAMS .. 29
8 SCENARIO EXECUTION MODULE .. 30

8.1 MODULE NAME AND FUNCTIONALITY... 30
8.2 SOFTWARE COMPONENTS ... 31

8.2.1 Goal/scenario execution component ... 31
8.2.2 WS Invocation component... 33

8.3 SOFTWARE COMPONENTS SEQUENCE DIAGRAMS .. 34
9 PERSONAL ASSISTANT MODULE ... 36

9.1 MODULE NAME AND FUNCTIONALITY... 36
9.2 SOFTWARE COMPONENTS ... 39

9.2.1 User and profile management component... 39
9.2.2 Goal selection component ... 40
9.2.3 Visualisation and Data Entry component.. 41

9.3 SOFTWARE COMPONENTS SEQUENCE DIAGRAMS .. 41
10 SYSTEM CORE MODULE ... 44

FP6-2004-27020 Page 4 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

10.1 MODULE NAME AND FUNCTIONALITY... 44
10.2 SOFTWARE COMPONENTS ... 46

10.2.1 SWS ontology manipulation component ... 47
10.2.2 WS connection manager component... 47
10.2.3 P2P connection manager component ... 48
10.2.4 Data repository component .. 48
10.2.5 Security component .. 50
10.2.6 Notification service component .. 51

10.3 SOFTWARE COMPONENTS SEQUENCE DIAGRAMS .. 53
11 CONCLUSIONS.. 53

ANNEX A: USED TECHNOLOGIES.. 54
A.1 BENCHMARKS AND PERFORMANCE TESTS... 55
A.2 SCALABILITY AND SIMULTANEOUS ACCESS .. 56

REFERENCES ... 58

GLOSSARY .. 59

FP6-2004-27020 Page 5 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Executive Summary
Functional specification provides description how a particular project or application should
look like and work. It details what the finished product will do, how a user will interact with
it, and what it will look like. We start with the description of the application in the report D3.1
Access-eGov Platform Architecture, where we described the overall functionality and
software architecture. Our goal in this report is to provide a detailed description of the specific
components of the system from the designer’s perspective. We are using the following
approach to prepare complete and usable functional specification:

• To define the application. In this stage we describe what the application is supposed to
be, what the application is supposed to do and who is using this application. This stage
was covered by the report D3.1.

• To create models. Various models will provide understanding of the components that
make up the system. This stage is covered by the reports D3.2, D4.1 and D5.1.

We consider development of three different models:

• User conceptual model. Development of use cases and user roles is based on how the
Access-eGov system is perceived by the user. This model of the system on the
conceptual level is already described in D3.1.

• Designer model. This is where the interface components and relationships to be seen
and experienced by the user requirements are defined. It details the available objects in
the system and how it can use them to accomplish certain tasks. This model is
presented in this report.

• Programmer model. Usually we create user and designer models, and then pass those
off to the programmer who would then build the application. Every programming
environment has inherent limitations and those constraints must be incorporated into
the designer model. We propose description of specific implementation constraints
related to selected implementation technology in the two subsequent reports D4.1 and
D5.1.

The results contained in this report are modules of the Access-eGov platform and their
components. Each module covers specific functionality of the system. The components of the
module are specific steps (phases) how to fulfil the functionality of the module from the
technical point of view. We develop use cases of each module considering its functionality,
API of each component, and we describe the functionality of the module by sequences of
interactions of the components. Further details of the components design considering
implementation constraints of the selected technology are elaborated in the reports D4.1 and
D5.1.

FP6-2004-27020 Page 6 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

1 Introduction

1.1 Objectives and scope
The aim of this document is to provide a list of software modules and components that will be
comprised in the Access-eGov architecture. A module is defined as a piece of software that is
able to perform a specific functional task, working alone, independently of other modules. A
component is defined as a piece of software that is able to perform a specific technical task. A
component is not able to work alone, and to be useful it must be combined with other
components to form software modules.

This document will describe in detail each of the modules on the list – providing for all of
them a definition, function it performs within the overall architecture, components needed to
implement the module, relations between those components, their communication, etc.

Following changes to the submitted version 1.0 for the first review were provided to this
document:

• Additional details about functionality of modules and components were provided.

• Executive summary of the deliverable is included.

• Annex containing description of benchmarks, performance tests, scalability and
simultaneous access of the used technology is included.

1.2 Document structure
• Definitions of used terminology

• A list of modules and high level definitions of the module functions

• Detail descriptions of identified modules together with their components

2 Definitions
Despite the fact that the terms like “component” and “module” are of common use the
consortium (at least during the phase of building common understanding inside of the
consortium) provides formal definitions of them.

2.1 Component definition
A software component is any piece of software that performs a specific technical task – i.e. it
does not fulfil a user requirement by itself, but it solves a low-level problem specific to a
domain. Although a software component performs a specific task, a component cannot
operate individually without the tasks performed by other software components. This is due to
the fact that a user requirement demands usually to solve a problem at different levels and in
different domains and disciplines. Ideally a software component should only solve one
specific problem so that it can be combined with other software components in many different
scenarios. At the same time the software component API should be kept as simple and clear
as possible, so that it can be integrated seamlessly with other components and a higher level
reuse can be achieved.

To fully describe a software component, the following should be provided:

FP6-2004-27020 Page 7 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• Component name – a simple name to uniquely identify a software component.
Besides, a short name will also be provided for practical reasons when writing and
reading documents referring to that component.

• Component goal – the goal it pursues, i.e. the technical problem that the component
solves. For each component its purpose inside the system or application must be
clearly stated, it means, the added value that the component offers to the system
developer.

• Component API – describes the input the component expects and the output it
provides, what enables to view the component as a black box. Before starting coding
any components its entire API must be closed and published, so that other components
can use it. Once the component API has been published, software components can be
grouped in modules where the components interact to fulfil one of the requirements of
the system.

2.2 Module definition
A software module is any piece of software that performs a specific functional task – i.e. a
task that fulfils a certain user requirement, thus solving a high-level problem specific to the
user domain. A software module should be able to work independently of other modules and
when the module stops working, other modules are not affected. Even when a software
module can act individually, it is very common that modules performing different tasks are
gathered together to build more complex software applications.

To fully describe a software module, the following information should be provided:

• Module name – a name uniquely identifying the software module. Besides, a short
name will also be provided for practical reasons when writing and reading documents
referring to that module.

• Module functionality – the functionality it adds to the software application, that is, all
the system requirements it meets. Its purpose inside the whole system or application
must be clearly stated, specifying what is the added value that module provides to the
user.

• Software components – a list of software components that are needed to implement
that module. Some of the software components may belong to one or more modules,
but obviously there cannot be components that do not belong to at least one module.

• Software components sequence diagram – describes the way software components are
gathered together and interact. The sequence diagram is a graph that represents
interaction between different software components. At the highest level, a scenario
from the use case describes a dialogue between the actor and the system. To support
the dialogue, the system must have components that can take responsibility for each
interaction. Mapping the sequential interactions to component operations is the job of
the sequence diagram. Therefore to be able to provide a sequence diagram, the API of
the software components needs already to be defined. The use of the sequence
diagrams is a part of the UML meta-model of object-oriented modelling.

3 Logical architecture
The overall Access-eGov system (also called the platform) may be sub-divided into the three
major parts [1]:

FP6-2004-27020 Page 8 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• the Access-eGov Infrastructure,

• the Access-eGov Personal Assistant client,

• Access-eGov Annotation services (not an integral, but an affiliated part of the Access-
eGov Infrastructure).

Public Administration tools

Access-eGov Annotation services

Figure 1 Overall architecture of the Access-eGov platform

The services are hosted and located on the premises of public administration institutions or
their respective data centres. These services are simply made available via the Access-eGov
system and thus they are not an integral part of the overall Access-eGov system. The services
are provided either electronically (directly via web service interfaces or web forms) or in
“traditional” (i.e. face-to-face) way – in this case they are only described and registered in the
Access-eGov platform. Only executable services will dispose of an electronic XML-interface
to the Access-eGov Infrastructure.

Public Agencies are supposed to annotate those services that they are willing to expose to the
public. These kinds of service-related meta-data will be transferred to the Persistence layer via
executable Core components. Therefore, domain experts may use a generic Annotation
service component that will be available as a web-based application.

The Access-eGov Personal Assistant accesses the Access-eGov Infrastructure functionality
via standardized interfaces and communicates with executable Core components that are
charged with Discovery, Composition, and Execution of the registered public services. The
Access-eGov Personal Assistant may only communicate with these Core components in order
to gain access to the persistently held data.

Goal repository, Composed Model Repository, Service Repository, Domain Ontology
Repository and Security Scheme Repository form components of the Persistence layer.

Public agencies may choose which of the above mentioned Access-eGov Infrastructure
components they wish to install on their premises or data centres. Such a “local” installation
of the Access-eGov Infrastructure components is supposed to interact as a peer in the peer-to-
peer overlay network that Access-eGov is likely to consist of. The more components are
installed locally (Core + Mediation + Persistence + Discovery + Orchestration + Execution),
the more functional value a node will provide to the overall Access-eGov system.

Discovery Composition Execution

Core components

Mediation

Access-eGov
Personal

Assistant client

Electronic
services (web/e-

forms)

"Traditional"
services

Other service
requester

Data repositories

FP6-2004-27020 Page 9 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Other service requesters (like SHG’s Responsibility Finder) will also be granted access to the
Access-eGov Infrastructure via XML-based interfaces.

4 Modules
This chapter will enumerate the modules that can be identified based on the reasoning and
results described in user requirement analysis and the Access-eGov platform architecture.
Most of the modules are derived from the needs implied by the use cases described in the
deliverables D3.1 [1] and D2.2 [2], and are grouped in the following sets:

• Information provider related modules (proposed short name prefix MP-*)

• Information consumer related modules (MC-*)

• System management related modules (MM-*)

4.1 Information provider related modules
Information provider related modules cope with the following main tasks of information
providers – namely annotating/registering services and building generic workflows out of
already defined services.

The modules that belong to this category are:

1) Service annotation module

2) Service discovery module

3) Service composition module

4.2 Information consumer related modules
The modules related to information consumer deals with two main tasks. The first one is
specification of a goal and execution of the retrieved services. The second one is the general
access management of the Access-eGov platform services.

The modules that belong to this category are:

1) Scenario execution module

2) Personal assistant module

4.3 System management related modules
System management related modules cope with the core functionality of the Access-eGov
platform.

The module that belongs to this category is: System core module.

5 Service annotation module

5.1 Module name and functionality
The proposed short name for the Service Annotation Module is MP-SAnnot.

The Annotation service as used within the Access-eGov will consist of a web-based
application that is not an integral part of the Access-eGov Infrastructure. Its main purpose is
to enable domain experts to semantically describe their electronic/traditional services, by

FP6-2004-27020 Page 10 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

using relevant public service ontology. This will explicitly involve annotating traditional
websites as well. For this purpose, the web application provides spidering capabilities to
allow easy inspection of the existing content, which concurrently can be annotated.

Via web service interfaces, the Access-eGov Annotation module is able to access the
respective Repositories within the Persistence Layer (notably the Ontology and Service
Repository) in order to register services and publish their descriptions. The creation,
modification and editing of these semantic descriptions is controlled by the security
subsystem.

The overall process of service annotation is depicted on the Use case diagram, presented on
the Figure 2. On the side of public administration, a role of an Annotator is required. The
Annotator should be a “domain expert”, i.e. a person that is familiar with the domain(s) to be
modelled, and also has some skills and experience in knowledge technologies.

Annotator

SWS ontology manipulation

Service discovery

Manage domain onotlogies

Annotate services

Define goals

Define life events

Specify mediation mappings

Browse ontology

Specify (non-)functional properties

Specify process model

Search goals/services

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Service annotation module

Figure 2 Use cases service annotation

Introduction of services (both electronic and traditional ones) to the AeG system requires the
semantic description and consequent registration of the service. To semantically describe a
service, the Annotator browses the space of available ontologies, stored in the AeG Ontology
repository. Then, he/she uses the concepts and relationships from the selected ontology to
mark-up important aspects of the service or website he/she is currently describing.

FP6-2004-27020 Page 11 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Availability of particular ontologies in a given time is usually not at the discretion of the
Annotator, but governed by other, for example institutional, constraints.

In addition to the services, there is a possibility to create and manage the Goals and Life
events in the MP-Sannot. Goals and Life events are workflow-like constructs that could be
considered as outputs, or interfaces, provided by AeG system for users. The Annotator can
define new or modify existing Goals by means of semantic description, similarly as it is done
for services. Then, the Goals and services can be combined into the more complex workflow
models – Life events, which are then exposed for users.

This is the first approach to describe the functionality related to annotation process. More
details will be described in subsequent reports D4.1, D4.2 and D7.2.

5.2 Software components
The tasks and functionalities provided by the MP-Sannot (see Figure 2) can be divided into
three separate groups. The first group is responsible for annotation of services, the second for
definition and maintenance of Life events and Goals, and the third group covers the
manipulation with domain ontologies.

According to this division, the following components were defined in the MP-Sannot module:

1) Service annotation component

2) Life events and Goals management component

3) Ontology management component

The MP-Sannot involves also some components from other AeG modules, namely:

From the MP-SDisc module (see chapter 6 for details):

1) Service Discovery component - used to find goals and services for the process model
composition.

From the MM-SysCore module (see chapter 10 for details):

1) SWS ontology manipulation component – used to manipulate ontologies

2) WS connection manager component – used to connect infrastructure services

3) Security component – used to manage security

4) Notification services component – used to notify annotators

In the following subsections, the three inherent components of the MP-SAnnot module will be
described in detail.

5.2.1 Service annotation component

5.2.1.1 Component name and goal
The proposed short name for the Service Annotation Component is SA.

This component is used to create a service profile, which is a semantic description of
particular service. The SA component uses the SWS ontology manipulation to browse the
domain ontologies. The concepts and relations, taken from the domain ontology, then create
the service profile – it means that they describe various properties of the service, its inputs
and outputs and other characteristics (see report D7.2 for further details).

FP6-2004-27020 Page 12 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

From the technical point of view, the wsmo4j library was taken as implementation platform
for the SA component. Object representation of the service is provided by the webService
class, defined in the wsmo4j. The service profile consists of functional (obligatory) and non-
functional (optional) properties. The set of functional properties is given by SA
implementation and can not be changed during the annotation process. Functional properties
are specifications of input preconditions and output postconditions, and are expressed in the
WSML logical expressions.

The non-functional (N-F) properties are semantic descriptions for the particular instance of a
service. They describe semi-structured information intended for citizens for service discovery,
e.g. service name, description, information about the service provider and properties which
incorporate further requirements for service capability (e.g. traditional office hours and office
location). Set of available N-F properties can be obtained from the domain ontology. When
creating or modifying a service profile, the Annotator selects some of the N-F properties and
specifies its instances by setting its value (as a WSML expression). In addition, the value of
particular N-F property can be retrieved from an outer resource, e.g. from an existing web
site. The requirement is that the web site will have unique URL and contains elements that
can be uniquely identified. Then, the bound N-F property can retrieve the actual value of the
web site element in run-time. This is a simple way how to semantically describe and involve a
content of existing web sites into the AeG system.

5.2.1.2 Component API
Since the SA component interacts directly with annotator user and is proposed to be a web-
based application, it does not expose any programming interface for other modules of the
AeG system. Contrary, the SA component implements the interfaces of SWS ontology
manipulation component, the WS connection manager component, and the Notification
services component.

As it was stated above, the SA component is a web-based application dedicated for annotators
to publish services. As such, it provides a web interface that is an integral part of the SA
component. The simple schema of basic elements used in the web interface is depicted on the
Figure 3.

eGovernment Service

Functional properies:
 <read-only list>

Non-functional properties:
 <name> <type> <values>
 ...
 <name> <type> <values>

Binding the data from: <url>

Elements to bind:

 <ID> <data_type> <property_name>
 ...
 <ID> <data_type> <property_name>

Service annotation component – web interface

Add Remove Save Cancel

Figure 3: Schema of web interface for the SA component

The left side of the screen contains a read-only list of functional properties, and the editable
list of N-F properties. The N-F properties are designed as name-type-value triples, where

FP6-2004-27020 Page 13 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

proper values are given from domain ontology (expressed in WSML language), or can be
entered manually.

The data for binding a particular N-F property with a source from an existing web site are
listed in the right side of the screen. The elements for binding are uniquely identified within
the web site by its ID. In addition, the elements are specified by proper data type and a name
of the N-F property. Then, the bound N-F property can retrieve its value from the element of
the outer web site. If the web site or particular element is not available, then the property will
take the type and value from its default specification, listed in the left panel of the screen.

5.2.2 Life events and goals management component

5.2.2.1 Component name and goal
The proposed short name for the Life Events and Goals Management Component is LEGM.

The MP-SAnnot module will have a component for the management of life events and goals.
This information will be stored in separate repositories and later on will be accessed by the
Personal Assistant module to enable more user-friendly and effective navigation in life events
and goals. This component will provide the functionality to:

1) Describe atomic (simple) goals. This will include specification of the functional
properties required to achieve this goal and specification of the non-functional
properties, which will additionally constrain candidate services.

2) Compose goals to the more complex generic scenarios to specify life events. User
interface for the design of the generic scenarios will be based on the graphical notation
and will allow intuitive visual design of the workflow and dataflow of the process
model. The same interface can be reused to specify orchestration process model for
the composed services.

The process of describing atomic goals by functional and non-functional properties is similar
as in the case of SA component, however, a different data repository is used for the LEGM.
The SWS ontology manipulation component is used to browse the Life events ontology and to
select proper concepts and relations to constitute the description of an atomic goal (see report
D4.1 for further details).

Object representation of an atomic goal is provided by the goal class, defined in the wsmo4j.
The functional (obligatory) and non-functional (optional) properties, also defined in the
wsmo4j library, are used to express the content of goals.

Atomic goals can be composed into more complex structures – generic scenarios that can then
be instantiated as life events. The generic scenario is a workflow-like sequence of goals and
sub-goals; it specifies a process model that consequently guides a decomposition of the life
event to atomic elements.

5.2.2.2 Component API
Again, the LEGM component interacts directly with annotator user, so as such, it does not
expose any programming interface for other modules of the AeG system. As a consumer, the
LEGM implements the interfaces of SWS ontology manipulation component, the WS
connection manager component, the Notification services component, and the Service
composition module.

The user interface for description of atomic goals and for composition of goals into the
generic scenarios is proposed to be a stand-alone Java application. The design of service-goal

FP6-2004-27020 Page 14 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

sequences will be based on the graphical notation to allow intuitive visual manipulation of the
workflow and dataflow of the process model.

5.2.3 Ontology management component

5.2.3.1 Component name and goal
The proposed short name for the Ontology Management Component is ONTOM.

The Ontology Management Component is responsible for the management of the Access-
eGov domain ontologies used to represent the functional and non-functional properties of a
particular service. This functionality includes:

1) Build ontologies from scratch or by reusing existing ontologies imported from the
Ontology repository.

2) Specify mediation mappings to other ontologies.

The following ontology types are assumed to be used within the AeG system:

Ontology name Domain

Service Ontology Atomic processes, their combination and constraints

Administration Ontology Organisational structure and contact information;
Responsibilities

Legal Ontology References to laws and legal requirements

Document Ontology Content, structure and inputs of forms, documents

User Case Ontology Needs and goals of citizens / businesses, including
individual constraints

Life Event Ontology Description of life events / business episodes, including
constraints

In the process of creation of these ontologies, the existing ontology resources will be analysed
in detail and used as much as it will be possible. The examination of available ontology
resources and its usability will be done within the T7.3 and T.1.

Management of all domain ontologies will be handled by a WSMO-compliant ontology
editor. Natural choice is the WSMO Studio, which provides the ontology editor with rich
functionality, including support for ontology format conversion, choreography designer,
mediation mappings, WSML validator, etc.

5.2.3.2 Component API
The ONTOM component again interacts directly with annotator user, so it does not expose
any programming interface for other modules of the AeG system. As a consumer, the
ONTOM implements the interfaces of the SWS ontology manipulation component, the WS
connection manager component, the Notification services component, and the Security
module.

FP6-2004-27020 Page 15 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

User interface is given by the WSMO Studio application that can be installed as a stand-alone
application, or as a plug-in to the Eclipse SW package.

6 Service discovery module

6.1 Module name and functionality
The proposed short name for the Service Discovery Module is MP-SDisc.

In the process of service discovery, functional properties of goals and services are
semantically matched by the Access-eGov Discovery module to select services, which are
able to achieve these goals. Non-functional properties specified by the requester are then used
to additionally filter or reorder the discovered services according to the requester preferences.

Service discovery in Access-eGov can be sub-divided into the two cases “Full-text search”
and “Semantic search” for service descriptions. The diagram below shows detailed citizen use
cases serviced by different components of MC-PAssist with involvement of other Access-
eGov components.

The description of actors follows below:

• Personal Assistant: The Personal Assistant takes user input and feeds it to the Full-
Text Search engine.

• Full-text search functionality will be provided in form of an interface to already
existing full-text search engines in order to retrieve services and life events/goals from
simply comparing the set of properties they’re annotated with.

• Full-text matching will be used to compute the low-level matching against properties
and includes pattern matching functionality

• Get Goals: The user asks the Personal Assistant to retrieve one or more goals that will
be matching a given term

• Filtering is used in all cases to order the result set according to a given scheme
(relevance, alphabetic order, etc.)

• Mediation: since Access-eGov will broker services across organisational boundaries
with (in some cases) a multitude of different ontologies, mediation will be needed to
map terms of source ontology to target ontology.

• Reasoning can be used after Mediation to judge about conformity of different input
and output types. It can also be invoked as step for filtering.

FP6-2004-27020 Page 16 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Personal assistant

Full-text search Full-text matching

Filtering

Mediation

Reasoning

Service discovery module

«include»

«include»

«include»

«include»

Get goals

«include»

Figure 4 Use cases full-text search for service discovery

• Semantic Search: In the case of semantically valuable user input (a specific input-
output set is requested), Access-eGov can go beyond mere full-text matching for a
semantic on-the-fly computation of an appropriate chain of services. The user input is
then used to check preconditions and effects of registered services without invoking an
already existing workflow.

• Ontology Manipulation is required when repositories will need to be looked up for
registered entries.

Personal assistant

Semantic search Matching

Mediation

Reasoning

Filtering

Ontology manipulation

Service discovery module

«include»

«include»

«include»

«include»

«include»

Figure 5 Use cases semantic search for service discovery

6.2 Software components
The components defined in this module are:

1) Full-text search component

2) Matching component

3) Filtering component

4) Reasoning component

FP6-2004-27020 Page 17 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

5) Mediation component

Components involved in this module are defined in the module MM-SysCore (see chapter 10
for details) and may include:

1) SWS ontology manipulation component – used for looking up data repositories

2) WS connection manager component – used to connect to Infrastructure Services

3) Security component – used to manage access control to repositories and services

6.2.1 Full-text search component

6.2.1.1 Component name and goal
The proposed short name for the Full-Text Search Component is FTS.

Access-eGov’s high-level full-text search component will provide an interface to the full-text
search of services and life events/goals. Full-text queries will be matched to the text extracted
from unstructured non-functional properties (i.e. name, description, etc.). Full-text index of
the various entities will be managed in the corresponding data repository. Additionally the
component enables obtaining list of goals that are relevant for requesting user. It is provided a
form suitable for processing by non knowledge-enabled clients.

6.2.1.2 Component API
Function Description

Full-text search goal/service
(query, non-functional properties):
Service/Goal

Provide full-text search for goals and services. This
functionality takes a query string and looks up
repositories connected to the Access-eGov network for
goal and service descriptions matching the query
string or the non-functional properties that the
triggering process fed in to FTS.

Inputs: query - full text query; non-functional
properties - used for filtering and reordering of results

Outputs: Set of matching services or goals

Get goals(non-functional
properties): Set of goals

Provides a filtered list of all goals. The triggering
process (or Personal Assistant) invokes the
functionality by feeding non-functional properties in.
Given this input, FTS lets ONTOM (cf. chapter 10)
look up data repositories and FIL filter the returned
result set.

Inputs: non-functional properties - used for filtering
and reordering of results

Outputs: Set of all goals, filtered by supplied
properties

6.2.2 Matching component

6.2.2.1 Component name and goal
The proposed short name for the Matching Component is MAT.

FP6-2004-27020 Page 18 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Depending on the available information and the complexity of the semantic annotations of the
services, semantic matching of the services can be based on the following strategies:

• Simple semantics: matching is based only on the outputs and effects, which are
specified as logical expressions with terms defined in the domain ontologies. Terms of
the requested goal are semantically matched to the terms of the outputs and effects
provided by the services with possible inference for exploring the knowledge about
the output types. This approach does not capture the actual relation between service
input and the corresponding outputs. Thus, the semantics of a requested service is only
described in a conceptual manner.

• Rich semantics: in case that the actual input values are available for the discovery
process, matching can be based on rich semantics, which captures the relation between
the service inputs and outputs. The input data provided in the discovery request by the
user or from the other services are used to check preconditions and effects without the
invocation of the existing services. This way, Access-eGov Discovery can achieve
highest precision, because it is possible to select only services, which are expressingly
able to provide the requested outputs with the actual inputs.

Which strategy will be used depends on the availability of the input data. For example, rich
semantic discovery should take place at execution time, when the Access-eGov Execution
module can collect as many data as it will be possible for the Access-eGov discovery.

The Matching component will directly make use of the SWS ontology manipulation
component in order to look up data repositories, namely the Ontology and Services
Repository.

6.2.2.2 Component API
Function Description

Search service (goal, non-
functional properties): Service

Provide semantic search of services based on the
matching of functional properties specified for the
requested goal. Given a selected goal and/or non-
functional properties that a service description shall
contain, MAT is triggering a semantic search for
finding appropriate services.

Inputs: goal - requested goal; non-functional
properties - used for filtering and reordering of results

Outputs: Set of matching services, filtered using FIL

6.2.3 Filtering component

6.2.3.1 Component name and goal
The proposed short name for the Filtering Component is FIL.

When the Matching component select services according to the functional properties, non-
functional properties specified by the requester are then used to additionally filter or reorder
discovered services according to the requester preferences. The decision about the type of
processing – i.e. filtering/reordering is taken based on the request context specified in the
discovery request.

FP6-2004-27020 Page 19 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

6.2.3.2 Component API
Function Description

Filter (services, non-functional
properties): Services

Filter (goals, non-functional
properties): Goals

Filter collection of services or goals according to the
non-functional properties. Different schematic orders
can be applied for filtering, e.g. sorting by relevance,
alphabetic order, etc.

Inputs: services/goals - filtered collection of
services/goals; non-functional properties - used for
filtering and reordering of results

Outputs: Filtered set of services/goals

6.2.4 Reasoning component

6.2.4.1 Component name and goal
The proposed short name for the Reasoning Component is REAS.

To explore the domain knowledge about the input and output types, Discovery components
will invoke a reasoner component. Reasoning will be used also for filtering the services
according to the structured non-functional properties. Since efficient reasoning for some
functional and non-functional properties will require optimized procedures (for example, to
infer nearest geographical location), the interface for reasoning should allow plug-in
extensions based on various implementations. More details will be specified in the subsequent
project reports (D4.1 and D4.2).

6.2.4.2 Component API
Component API will be specified in the subsequent project reports (D4.1 and D4.2).

6.2.5 Mediation component

6.2.5.1 Component name and goal
The proposed short name for the Mediation Component is MED.

The role of the Access-eGov Mediation component is to reconcile the semantic and data
heterogeneity that can appear during discovery, composition or execution. For the Access-
eGov platform, it is not expected that the public administrations will use the same common
ontology to describe their services or life events related to these services. It is possible that
each organization can have its own domain ontology, which has to be mapped to other
ontologies used to describe goals and services. Mappings of the domain ontologies can be
required during all phases of the request, namely during the discovery, composition and
execution phase.

The mediation will be based on mappings expressed with the mapping ontology and designed
for the mapped domain ontologies. Mappings can be stored in the ontology repository
together with the corresponding mapped ontologies. Access-eGov Mediation will load and
translate mappings into the rules, which will be used to merge ontologies and to translate
specified incoming instances from the input ontology to the instances of the target ontology.

The following types of mediators were identified:

FP6-2004-27020 Page 20 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• Goal to life event mediation - In case that one life event refers to many goals, each
goal can be described with different ontology. All involved ontologies will be merged
to form a union ontology which will be used to specify the generic scenario process
model associated with the life event.

• Service to goal mediation - When the Access-eGov Discovery component matches
semantic description of the service with the semantic description of the goal, service-
to-goal mediator will align different goal and service ontology. This mediation can be
integrated in the reasoning interface, which will dynamically merge goal and service
ontology in the matching phase for both functional and non-functional properties.

• Life event to service mediation - This is the reverse mapping from the union ontology,
which specifies the orchestrated scenario for the life event request to the ontology
used to describe particular service involved in the orchestration. This mediation is
required for the invocation because grounding mechanism is specified for the service
ontology only. In this case, the involved mediator will transform data instances from
the source scenario ontology to the target service ontology for the inputs and in the
reverse direction for the outputs.

6.2.5.2 Component API
Component API will be specified in the subsequent project reports (D4.1 and D4.2).

6.3 Software components sequence diagram
The sequence diagrams in this section illustrate the interactions between MP-SDisc and MP-
SComp. These interactions identify the functions necessary for MP-SDisc. For each of the
cases, a sequence diagram is provided.

Figure 6 Sequence diagram for goal discovery given a goal and non-functional properties

Matching

Search service (goal, non-functional properties) [simple goal]

Personal
Assistant/

Service
Composition

Filter (services, non-functional properties)

SWS ontology
manipulation

Filtering Mediation Reasoning

Map ontology

Mapped ontology

Invoke reasoner

Get services (domain concepts)

Inferred statements

Matched services

Filtered set
Services

FP6-2004-27020 Page 21 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

The sequence diagram on Figure 6 describes in detail the case of a service search according to
a goal and some non-functional properties:

1. Search Service (goal, non-functional properties) [simple goal]: The Personal
Assistant sends a Search request for a service given a simple goal to MAT.

2. Map Ontology: MED is used to mediate between different ontologies that are used to
describe entities (i.e. services or goals, etc.). Sufficient ontology information is
transferred to MED.

3. Mapped Ontology: An appropriate (in the best case 1:1) mapping scheme for two
ontologies will be returned to MAT.

4. Invoke reasoner: REAS is invoked in order to judge about appropriate equivalence of
properties, inference of terms, etc. based on the input and the service request in
question.

5. Inferred statements: REAS returns its findings and assumptions about equivalence to
MAT.

6. Get services (domain concepts): based on these findings, ONTOM is asked for
retrieval of matching service and goal descriptions in question.

7. Matched services: ONTOM returns the matching storage entries to MAT.

8. Filter (services, non-functional properties): FIL is invoked for sorting the randomly
bundled result set.

9. Filtered set: FIL returns the set of matching services filtered according to a given
schematic order (relevance, alphabetic order, etc.).

10. Services: A Set of Services matching the request is returned to the Personal Assistant

Figure 7 Sequence diagram for service/goal discovery given a query string and non-functional properties

The sequence diagram on Figure 7 describes in detail the case of simple full-text search
(simple retrieval by a query string):

Full-text
search

Full-text search goal/service (query, non-functional properties)

Personal
Assistant

Filter (services/goals, non-functional properties)

SWS ontology
manipulation

Filtering Mediation Reasoning

Get goal/service

Goals/services

Map ontology

Mapped ontology

Invoke reasoner

Inferred statements
Filtered set

Goals/services

FP6-2004-27020 Page 22 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

1. Full-text search goal/service (query, non-functional properties): The Personal
Assistant sends a Search request for a service or goal to FTS.

2. Get Goal/service: FTS sends a full-text search request to ONTOM.

3. Goals/Services matching the query string are returned in random order to FTS

4. Filter (services/goals, non-functional properties): FIL is invoked for sorting the
randomly bundled result set.

5. Map ontology: in order to sort the result set, MED is called to semantically assist in
mapping between the different source ontologies

6. Mapped ontology: the mapping is returned to FIL for further sorting computation.

7. Invoke reasoner: REAS is invoked in order to judge about appropriate equivalence of
properties, as a last step in filtering.

8. Inferred statements: REAS returns its findings and assumptions about equivalence to
FIL.

9. Filtered set: FIL returns the set of matching services and/or goals as filtered
according to a given schematic order (relevance, alphabetic order, etc.).

10. Goals/Services: A Set of Services matching the query string is returned to the
Personal Assistant

Personal
Assistant

Service
Composition

Matching

Search service (goal, non-functional properties) [complex goal for LE]

Resolve sub-goals (goal, non-functional properties)

[*for each sub-goal] Search service
(goal, non-functional properties)

Service

Composed
service Composed

service

Figure 8 Sequence diagram for service discovery given a goal and non-functional properties.

The sequence diagram on Figure 8 describes in detail the case of service resolving and
discovery during a complex goal scenario (retrieval by a complex goal):

1. Search service (goal, non-functional properties) [complex goal for LE]: The
Personal Assistant sends a Search request for the services that are affiliated to a
complex goal to MAT.

2. Resolve Sub-goals (goal, non-functional properties): MAT sends a full-text search
request to MP-SComp.

3. Search Service (goal, non-functional properties): for each possible sub-goal, the
found service descriptions are returned to MAT.

FP6-2004-27020 Page 23 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

4. Service: The services of the various sub-goals are ordered and composed by MP-
SComp to form a reasonable cascade.

5. Composed Service: The service composition/workflow is returned to MAT and to the
Personal Assistant respectively.

Figure 9 Sequence diagram for goal discovery given non-functional properties

The sequence diagram on Figure 9 describes in detail the case of a simple full-text search of
goals:

1. Get Goals (non-functional properties): The Personal Assistant sends a Search
request for a goal to FTS that shall match the selected non-functional properties.

2. Get Goals: FTS sends a full-text search request to ONTOM.

3. Goals matching the request are returned in random order to FTS

4. Filter (goals, non-functional properties): FIL is invoked for sorting the randomly
bundled result set.

5. Map ontology: in order to sort the result set, MED is called to semantically assist in
mapping between the different source ontologies

6. Mapped ontology: the mapping is returned to FIL for further sorting computation.

7. Invoke reasoner: REAS is invoked in order to judge about appropriate equivalence of
properties, as a last step in filtering.

8. Inferred statements: REAS returns its findings and assumptions about equivalence to
FIL.

9. Filtered goals: FIL returns the set of matching goals as filtered set according to a
given schematic order (relevance, alphabetic order, etc.).

10. Goals: A Set of Services matching the non-functional properties in question is
returned to the Personal Assistant

Get goals (non-functional properties)

Filtering Personal
Assistant

SWS Ontology
Manipulation

Mediation

Filter (goals, non-functional properties)
Map ontology

Goals

Mapped ontology

Full-text
search

Reasoning

Get goals

Goals

Invoke reasoner

Inferred statements
Filtered goals

FP6-2004-27020 Page 24 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

7 Service composition module

7.1 Module name and functionality
The proposed short name for the Service Composition Module is MP-SComp.

In case that Access-eGov Discovery module cannot find an atomic service, which is able to
achieve requested goal, goal description is delegated to the Access-eGov Composition
module, which will try to orchestrate existing services to the new scenario to solve this goal.
Although there are many initiatives to define industry standard languages for web service
orchestration like BPEL, they have restricted capability to support only static service
composition. Access-eGov Composition module provides support for dynamic composition of
the services, which is not based on the static workflow pre-defined for the life event.

For the dynamic service composition, the following three classes of the problems were
identified:

• Fulfilling preconditions: a service that can provide the desired effects and outputs
exists, however, not all of this service's preconditions or inputs are met from the
outset.

• Generating multiple effects: requester encodes in the goal multiple effects that are
related, yet can be generated by different services.

• Dealing with missing knowledge: some information required to select services is
missing at the composition time.

Automatic composition of the services, which will solve these problems, is the subject of the
current and future research. For this reason, current specification of the Access-eGov
Composition component includes a semi-automatic approach based on the generic scenarios
defined for the life event categories.

Generic scenario will specify the process model, which will guide decomposition of the
multiple effects specified for the life event to the sub-goals achieved by the atomic services.
Sub-goals are then resolved with the Access-eGov Discovery, which will match sub-goal
description with the existing services, possibly with the additional planning in the Access-
eGov Composition to fulfil preconditions. Discovery matching will be based on the functional
properties specified for the sub-goal and non-functional properties specified either by the user
in the request, or constrained by the logical expressions predefined in the generic scenario.
With the resolution of the sub-goals, generic scenario can be dynamically customized
according to the specific user needs and conditions.

FP6-2004-27020 Page 25 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Service discovery Service discovery

Resolve generic scenario

Fullfil pre-conditions

Formulate sub-goals

Decompose pre-conditions

Resolve sub-goal

«include»

«include»

«include»

«include»

Service composition module

Figure 10 Use cases service composition

The description of actors follows:

• Service discovery. Service discovery is responsible for discovery of services
according to their properties. It is a general user of MP-SComp representing one
component from MP-SDisc. This MP-SDisc’s component delegates unresolved goal
description to the MP-SCom and also it receives back the sub-goals from MP-SComp.

The description of the use cases follows:

• Resolve generic scenario. After receiving the description of unresolved goal it is
necessary to check whether the orchestration interface is specified. If yes, the
identified sub-goals are sent back to MP-SDisc for resolving. If no, the Fulfil pre-
conditions case is included.

• Fulfil precondition. When unresolved goal doesn’t contain orchestration interface the
MP-Comp tries to fulfil its precondition by chaining of the existing services (by
recursively regarding service’s effects and outputs).

• Decompose pre-conditions. To find services which provide necessary preconditions
specified by goal, these preconditions are decomposed to subsets.

• Formulate sub-goals. By resolving goal without orchestration interface the process
model in form of sub-goals with specified precondition is built and therefore a new
orchestration interface is defined.

• Resolve sub-goal. When a goal is decomposed to the sub-goals these sub-goals are
sent back to the MP-SDisc where they are resolved by services.

7.2 Software components
The components defined in this module are:

1) Resolving component

2) Chaining component

FP6-2004-27020 Page 26 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

The component involved in this module defined in the module MP-SDisc (see chapter 6 for
details):

1) Mediation component

The components involved in this module defined in the module MM-SysCore (see chapter 10
for details):

1) SWS ontology manipulation component - used to manipulate ontologies

2) WS connection manager component - used to connect infrastructure services

3) Security component - used to manage security

7.2.1 Resolving component

7.2.1.1 Component name and goal
The proposed short name for the Resolving Component is RES.

The RES component is responsible for replacing sub-goals by the relevant services, i.e. it is
responsible for service composition. The RES component might also delegate goal to the
Access-eGov Chaining component.

The delegation of goal is done in case some preconditions of a goal are not fulfilled. We can
let the decision whether to use the service of Chaining component in such situation or not to
the user, but we will assume that it will be automatically delegated to the Chaining
component.

Sub-goals might be specified in the orchestration interface (a process model of the generic
scenario as abstract activities) and they have to be resolved before the scenario is executed.
To resolve sub-goals, the RES component invokes the Access-eGov Discovery module. Note,
that in case the goal was delegated to the Chaining component (process model is not explicitly
specified and the relevant service can not discovered) the Access-eGov Discovery module has
to be used (see the section about Chining).

7.2.1.2 Component API
There is only one API function for the Resolving component. This API will resolve all sub-
goals formalized as a complex goal with the internal process model which consists of abstract
activities. A complex goal has defined sub-goal and its activities in its choreography interface.
As can be seen in the following table, the inputs consists of goal - formalizing generic
scenario specified for the life event - and non-functional properties used for filtering of
candidates (services) for sub-goals. The provided output is in a form of composed activities
which fulfil sub-goals in the generic scenarios or a service consisting of more atomic services
in a not-necessary linear sequence - composed service.

Function Description

Resolve sub-goals (goal, non-
functional properties): composed
service

Resolve generic scenario to the composed service.
This API will resolve all sub-goals of the specified
generic scenario (formalized as a complex goal with
the internal process model which consists of abstract
activities) and create new composed service. It will be
used in case the complex goal has to be resolved. To

FP6-2004-27020 Page 27 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

resolve the complex goal means to find relevant
atomic services fulfilling the sub-goals and compose
them into composed service.

Inputs: goal – complex goal delegated from the
discovery module during the (semantic) service
discovery process

non-functional properties - used for filtering of
candidates for sub-goals

Outputs: composed service form of composed
activities which fulfil sub-goals in the generic scenario

7.2.2 Chaining component

7.2.2.1 Component name and goal
The proposed short name for the Chaining Component is CHAIN.

The responsibility of the CHAIN component is to compose services. The strategy is to check
whether the effects and outputs of one service meet the preconditions and inputs of the
following one. It aims at fulfilling all the preconditions which have to be met.

In case that not all the inputs or preconditions of the resolved services are met from the outset,
“chaining” of the services can be used to overcome this problem. Chaining can be understood
as a way to compose services by recursively regarding the effects and outputs of one service
as the preconditions and inputs of a following one until a desired effect is reached. This can
be done automatically with the AI planning methods. Decomposition with the generic
scenarios should further simplify this process.

7.2.2.2 Component API
There is only one API function for the Chaining component. As can be seen in the following
table, it takes the service which can not provide its outputs because some of its preconditions
are not resolved. The provided output is a new process model specified in the orchestration
interface in a new goal and composed services - composed atomic services which fulfil sub-
goals in the new goal.

Function Description

Resolve preconditions (service):
process model

Compose services by recursively regarding the effects
and outputs of one service as the preconditions and
inputs of a following one until the preconditions (a
logical expression in the functional properties) of the
specified service are not met. The Resolving
component will be accessing this function of the
Chaining component in case that not all the inputs or
preconditions of the resolved services are met.

Inputs: service which preconditions have to be
resolved (a service can not provide its outputs because
of these unresolved preconditions)

FP6-2004-27020 Page 28 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Outputs: process model (the orchestration interface in
a new goal) with composed services (composed
atomic services which fulfil sub-goals in the new goal)

7.3 Software components sequence diagrams
Following sequence diagram illustrates the interactions between MP-SDisc and both
component of MP-SCom. These interactions identify necessary functions of MP-SCom’s
components.

Figure 11 Sequence diagram for service composition

Description of sequences follows:

1) Resolve goal. MP-SDisc sends an unresolved goal to Resolving component (RES). If the
goal has an orchestration interface each sub-goal defined in this interface is sent back to
the MP-SDisc.

2) For each sub-goal. Each sub-goal from complex goal is processed in the following.

3) Search service. Sub-goals are sent with its non-functional properties to the MP-SDisc
where they are replaced by relevant services. In case there is no service, which match the
sub-goal MP-SDisc send it to RES.

4) Services. Discovered services are returned to RES.

5) Resolve preconditions. In case the service relevant to the particular goal was not found
the RES delegates it to the Chaining component (CHAIN), where outputs and effects of
the existing services (MP-Disc is again called here see Search service) are recursively
regarded (the chain of services is built) until all preconditions of specified goal are met.

Resolving

Resolve goal (goal, non-functional properties)

Discovery Chaining

[*for each sub-goal]

Services

Search service (goal, non-functional
properties)

Resolve preconditions (service) [if
preconditions are not met]

[until
preconditions
are met]

Search service (goal, non-functional
properties)

Services

Process model
Composed service

FP6-2004-27020 Page 29 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

6) Until preconditions are met. The CHAIN first decomposes the set of precondition and
then tries to discover relevant service for each of this sub-set of preconditions.

7) Search service. Similar as 3

8) Services. Similar as 4

9) Process model. If the goal is resolved, the process model in the form of new orchestration
interface (this model can be reused in the future).

10) Composed service. Finally the composed service is built. From the services available to
resolve goals.

8 Scenario execution module

8.1 Module name and functionality
The proposed short name for the Scenario Execution Module is MC-ScExec.

When the user wants to achieve his goal, he lets the personal assistant start the execution of
the retrieved service or workflow. Progress of this run is always visible to the user through the
personal assistant client. So, simply, the user executes the scenario via Personal Assistant.
Execution interaction can be the execution itself, secondly inspecting the state of the
execution and finally updating the missing information during the execution process. As we
can see in the Use case of this component on the following figure there are 3 above mentioned
main activities of this component.

Personal assistant

Execute scenario

Inspect

Update

Invoke web service

Invoke traditional service

Resolve sub-goal

Check timeout

Scenario execution module

«include»

«include»

«include»

«include»

Figure 12 Use cases scenario execution

Main activity is the “Execute scenario”, which includes the following activities:

• Invoke web service

• Invoke traditional service

FP6-2004-27020 Page 30 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• Resolve sub-goal

• Check timeout

Invoking the web service is the process in which the context is processed into the inputs of the
particular web service which is then invoked. Outputs of the web service are then processed
and returned to the system.

Invoking of the traditional services is the special type of invocation, where activity is led back
to the user (to the Personal Assistant). Executing of the scenario waits then for user to input
the output of the traditional service.

Resolving of sub-goals is needed if not all the scenario for the execution is fully resolved at
the beginning. It means some of the steps in the scenario are already the services to execute,
but some of the steps are still only goals (it is possible these goals can be resolved after some
of the services in the scenario are executed). Thus additional resolving is needed during the
scenario execution.

If the service invoked has specified a delivery time, a timeout-timer for output-delivery will
be generated and can be checked. If the service does not provide output during the necessary
time, timer raises the time-out event.

In many cases, the execution phase of such services or scenarios will also include activities
that are only available offline. Access-eGov will, in this case, simply wait until notification
(update of process context) of completion of the specific offline activity. That’s why Inspect
and Update activities are needed in the use cases diagram.

8.2 Software components
The components defined in this module are:

1) Goal/scenario execution component

2) WS invocation component

The components involved in this module defined in the module MP-SDisc (see chapter 6 for
details):

1) Mediation component

The components involved in this module defined in the module MM-SysCore (see chapter 10
for details):

1) SWS ontology manipulation component - used to manipulate ontologies

2) WS connection manager component - used to connect infrastructure services

3) P2P connection manager component - used to connect P2P infrastructure - distributed
repositories

4) Security component - used to manage security

5) Notification services component - used to send timeout notification to Personal
Assistant client

8.2.1 Goal/scenario execution component

8.2.1.1 Component name and goal
The proposed short name for the Goal/Scenario Execution Component is GSE.

FP6-2004-27020 Page 31 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

The Goal/scenario execution component is responsible for invoking composed services of
orchestrated scenarios. For simple web services Goal/Scenario Execution Component simply
uses the WS Invocation component (see next subchapter) to execute it. For composed
services, the Execution component executes process instances of the specified process model
and executes it with initial input data provided by the service requester (D3.1). The inputs to
this invocation are initial process context and composed services. As the web services can be
executed asynchronously (there is timer for them) and some of the services in the scenario can
be of the traditional type (user by himself modifies the input context, so the execution has to
wait for user to update the context) there are the update and inspect functions to provide
needed functionality.

8.2.1.2 Component API
Function Description

Execute service/scenario
(service/scenario, initial context):
Process context

Personal Assistant client uses this API to execute
scenarios (composed services) or to invoke atomic
services. If the input is atomic web service, it is simply
invoked via WS Invocation component. If the input is
the scenario, which is the set of the composed
services, this function tries to invoke the services one
after other (as they are composed and outputs of one
can be inputs of other).

Inputs: service/scenario; initial process context which
specify inputs from the user profile

Outputs: Process context

Update (context update): Process
context

Personal Assistant client uses update API in case that
invoking of traditional service has changed the
associated process context. If the scenario execution
consists of the traditional services, this function is
used to update the context so the web services in
currently executed scenario, which are waiting for the
outputs of the traditional services (which is the input
for them) can be invoked. It is also notified by the
timeout event if the execution of some service timed
out.

Inputs: Process context - with updated data

Outputs: Process context

Inspect scenario: Process context Personal Assistant client uses inspect API for
inspecting current state of the scenario execution. It is
used to handle asynchronous character of the scenario
execution. It inspects the state of the timers for the
services and the state of their input and output data.

Inputs: Process identification

Outputs: Process context

Create timer (Timer) If the service has the time in which it is needed to be
executed, the timer is created for it.

FP6-2004-27020 Page 32 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Inputs: service

8.2.2 WS Invocation component

8.2.2.1 Component name and goal
The proposed short name for the Web Service Invocation Component is WSInvC.

The invocation component is responsible for invoking atomic web services in the proper
manner. In case the elementary web service has to be invoked, this component performs it.
The inputs to this invocation are process context and web service identifier. Invocation
component processes context information into inputs of web service (grounding). It also
processes the output data of the web service into output data needed by Goal/scenario
execution component.

The tasks to be done within WS Invocation component follow from the fact that the execution
process remembers the state and data of the execution itself in the form of process and
ontology instances. These have to be transformed into right series of messages with the
appropriate web service. In order to invoke a web service not only the flow of the messages
should be specified, but also the data (input, output) contained in messages should be
transformed. Transformation is done according predefined rules that connects ontology
instances (used in execution process and defined in WSML) and data in messages (used by
web service and defined in WSDL).

8.2.2.2 Component API
There is only one API function for the Web Service Invocation component. As seen in
following table. It takes as an input the identifier of the web service and the input data. It first
grounds the input data, transforms the input data from the internal representation of our
system to the form required by the web service. After the input data are grounded, the web
service is invoked via web protocol with these data. Invocation of the web service returns
(again via web protocol) the output data. These data are then grounded again from the web
service related form to the form needed by our system. Output data in the form needed by our
system are returned as a result of the Invoke web service function.

Function Description

Invoke web service (service, input
data): Output data

Goal/scenario execution component uses this API to
invoke Web service. Supposing the needed grounding
information is available (defined by the service
annotator), the invocation component communicates
with the web service to be invoked (service) with
appropriate message flow. Data used in messages are
transformed from ontological instances (input data)
into XML data and from XML data into ontological
instances (output data) - when the web service sends
back a message. Output data are put into the execution
process context that defines the next actions.

Inputs: service – semantically annotated service to be
invoked; input data – process execution context data
relevant for the web service invocation, that are in the

FP6-2004-27020 Page 33 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

form of ontology instances

Outputs: Output data – data to be updated in the
process context execution (in the form of ontology
instances) as result of the web service invocation
(created after the grounding process from XML data
that receives the invocation component from the Web
service)

8.3 Software components sequence diagrams
Following sequence diagram illustrates the interactions between Personal Assistant and all
components of the Scenario execution module. These interactions identify necessary
functions of these components.

Figure 13 Sequence diagram for scenario execution

G/SEC NSC (Core)

Execute service/scenario (service, initial context)

Personal
Assistant

Matching
(MP-SDisc)

WSInvC Web Service

Invoke web service (service, input data)

Ground input data

Invoke web service (web protocol)

Output data (web protocol)

Ground output data

Output data

Create timer

Resolve sub-goal (goal, non-functional properties)

Service
Process context

Update scenario (context update)

Process context

Inspect scenario

Process context

// asynchronous - Check timer

Time-out event

// asynchronous - Time-out notification

FP6-2004-27020 Page 34 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Description of sequences follows:

1) Execute service/scenario (service, initial context). Personal assistant initialises the
execution of the scenario/service with the initial context. It sends the initial context and
scenario or service to the Goal/Scenario Execution Component.

2) Invoke web service (service, input data). Goal/Scenario Execution Component invokes
the Web Service Invocation Component with the service and input data.

3) Ground input data. Web Service Invocation Component grounds input data (processes
context information into inputs of web service)

4) Invoke web service (web protocol). Via web protocol the Web Service Invocation
Component invokes web service(s)

5) Output data (web protocol). Output of the web service is sent back to the Web Service
Invocation Component.

6) Ground output data. In the Web Service Invocation Component output of the web
service is grounded (web protocol based output is processed to output data for the
system).

7) Output data. Web Service Invocation Component sends back the output data to the
Goal/Scenario Execution Component.

8) Create timer. If the service invoked in the process activity has specified a delivery time,
the Goal/Scenario Execution Component will create a timeout-timer for output-delivery.

9) Resolve sub-goal (goal, non-functional properties). If some of the goals are still not
resolved, after some execution time of the scenario execution they can be resolved into
services in the Service Discovery Module.

10) Service. Service Discovery Module returns resolved service to Goal/Scenario Execution
Component.

11) Process context of the resolved sub-goal is returned to the Personal Assistant.

12) Update scenario (context update). If the context has to be updated from the Personal
Assistant (in case that invoking of traditional service has changed the associated process
context), context update is sent from the Personal Assistant to the Goal/Scenario
Execution Component.

13) Process context. is returned to the Personal Assistant after the scenario was updated.

14) Inspect scenario. If Personal Assistant wants to inspect the scenario execution, it calls the
Goal/Scenario Execution Component to inspect scenario.

15) Process context is returned to the Personal Assistant of the current process execution
state.

16) // asynchronous - Check timer. Goal/Scenario Execution Component checks in the
asynchronous mode the timer set for the execution.

17) Time-out event. It is generated, if the executed service runs out of time without returning
the result.

18) // asynchronous - Time-out notification. Goal/Scenario Execution Component notifies
the Notification Service Component in the Core module about time out of the service
execution.

FP6-2004-27020 Page 35 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

9 Personal assistant module

9.1 Module name and functionality
The proposed short name for the Personal Assistant Module is MC-PAssist.

The personal assistant module is responsible for interaction with the user of the Access-eGov
platform. The user (usually citizen) does not work directly with the MC_PAssist module, but
connects through Personal Assistant Client that is a web application. The Personal Assistant
Client communicates to the Access-eGov platform and invokes its services through the MC-
PAssist module. Citizen must be at first authenticated through his/her user name and
password. Authentication is important for the Access-eGov application, because the supported
e-government services are customized according citizen’s profile which may contain sensitive
data. The citizen connected to the platform can use following general functions of the MC-
PAssist module:

• Manage citizen’s user profile. Citizen’s user profile is stored in the data repository and is
partly editable by the citizen. Citizen’s user profile is also used to fill in non-functional
properties when discovering services and customizing a goal for particular user. More
details on the user profile and data repository can be found in D5.1.

• Select goals/scenarios. The main purpose of the Access-eGov is the support composing e-
government services into a specific life event scenario. The data repository of the Access-
eGov platform stores simple goals scenario based complex goals. Citizen can either
browse the list of all goal/services or select one by a full-text search.

• Execute scenario. Citizen orders selected goal to be executed. He/she enters required data
and the execution process starts. The process of an execution and its results must be
visualised and presented to the citizen. The visualisation must consider that the execution
process is discrete and each step can take a log time and citizen is disconnected during
that time.

FP6-2004-27020 Page 36 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

uc Assistant Module Functions

AeG Infrastructiure

System core

Execution module

Discovery module

Personal Assistant Module

Citizen

User and profile
management

Visualisation and Data
Entry

Logon

Tune privacy
settings

Goal selection

Full text search

Upadate

Execute goal /
scenario

Full text search
LE/ goals /
services

Manage user
profile

Execute goal /
scenario

Execute offline
activity

Get goals for user

Share user data

Browse goals
Display details of
selected entities

Fill input service
data

Idetified Citizen

Setup goal
precondition
parameters

Inspect

Manage Security
«extend»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 14 Use cases personal assistant

More detailed specification of the Personal assistant module will be presented in subsequent
reports D5.1 and D5.2.

Diagram shows detailed citizen use cases serviced by different components of MC-PAssist
with involvement of other Access-eGov components.

The description of actors follows:

• Citizen. A general user which connects to the system and must be authenticated first. The
only function provided for that user is to search for services and watch services details,
create a user profile. No other functions can be used by that user.

• Identified citizen. This citizen is already registered and he/she can logon to the system.
After logon he/she can manage his/her user profile, tune its privacy settings, search or
browse goals and execute a scenario associated with the goal. When the scenario is
running the citizen can always see the status of its execution and whole execution process
is visualised.

• User and profile management. This actor represents a component of the MC-PAssist
module. The purpose of this component is to provide an interface (UI and server
component) for managing information associated with the citizen. The details of the
component are described in the next section.

FP6-2004-27020 Page 37 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• Visualisation and data entry. This actor represents a component of the MC-PAssist
module. The purpose of this component is to provide visualisation and enable user to
interact with the processed scenario. The details of the component are described in the
next section.

• Goal selection. This actor represents one component of the MC-PAssist module. The
purpose of this component is to provide selection of the goal or scenario either by
browsing or full-text search. The details of the component are described in the next
section.

The description of use cases follows:

• Tune privacy settings. The citizen is provided with a set of forms. The forms are filled in
by the citizen with his/her personal data. This data is then used to define user profile of the
citizen and is stored in the data repository for the customization of goal execution process
and for further management.

• Logon. When a citizen has registered its user profile in the Access-eGov system it can
logon. After logon, the citizen is authenticated and he/she is able to use Access-eGov
functions and execute scenarios which are customized according to his/her user profile.

• Execute goal/scenario. After selection of desired life event/scenario the citizen can
execute discovered e-government services required to fulfil the scenario. Execution of the
services requires citizen input data and data from the citizen’s user profile. State of
execution of each activity is displayed for the citizen.

• Browse goals. The citizen is provided with a catalogue of goals/life events from the
repository. The catalogue is prepared according ontology of goals/life events. The
catalogue includes all possible goals that the citizen can execute within the Access-eGov
platform.

• Full-text search. The browsing of goals is only one possibility how to select desired goal.
Another possibility is to search life events repository. The module supports full-text
search, which means the citizen enters keywords that are used in discovery module for the
goals retrieval.

• Execute offline activity. Some of the services are traditional and offline activities from
the point of view of the Access e-Gov platform. The citizen is provided with location of
the desired office and prepares input forms/applications for the officers. When the citizen
finishes the offline activity it can again connect and continue the execution process by
entering the results of the service.

• Fill input service data. When citizen executes the desired scenario each service within
the executed services workflow needs some data as an input. The data can be used from
citizen’s user profile, but there is still possibility that the service needs additional
information. Citizen is provided by the set of input forms to enter desired data.

• Display details. Citizen can always see the details of each goal or service on the screen.
The details include general information and guide concerning a goal/service: office
procedure description, contact information, required documents, payment conditions, etc.

• Setup goal preconditions. Before the details of a goal to be executed can be watched and
its workflow examined the citizen needs to customize it filling a form. The form contains
information which is necessary to juxtapose workflow fitting user’s case and initiate the
goal execution.

FP6-2004-27020 Page 38 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• Manage user profile. User profile data is entered by the citizen. Module provides input
forms for the citizen. Input forms are processed and entered data is stored in the data
repository. Part of this data can then be updated by the citizen.

9.2 Software components
The MC-PAssist module is divided into three different components. Each component is
responsible for the specific types of functionalities of the module to fulfil user requirements.

The components defined in this module are:

1) User and Profile Management component

2) Goal Selection component

3) Visualization and Data Entry component

The components involved in this module and defined in the module MP-SDisc (see chapter 6
for details):

1) Full-text search component – used for full text search

2) Get goals – used to get the list of goals for browsing

The components involved in this module and defined in the module MC-ScExec (see chapter
8 for details):

1) Goal/scenario execution component – manages scenario execution which is visualized
by the assistant

The components involved in this module and defined in the module MM-SysCore (see
chapter 10 for details):

1) SWS ontology manipulation component – used to get information necessary for
creating structure of goals during goal navigation

2) Data Repositories – used as actual data store for user related data

3) WS connection manager component – used to provide communication channel
between the assistant and core services

4) Security component – used to manage security of users who log in and execute
services

5) Notification services component – the assistant passes notifications requested by the
notifications component to the citizens.

9.2.1 User and profile management component

9.2.1.1 Component name and goal
The proposed short name for the User and Profile Management Component is UPM.

This component performs tasks related to the user profile management. It is responsible for
the management and access to user related data called user profile. User profile contains
personal data of the user and data gathered from previous service executions. For the user
personal data the user ontology is used. It is stored in central data repository. The component
communicates also with Repository management component which is responsible for data
repositories manipulation.

FP6-2004-27020 Page 39 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

The UPM keeps history information from previous service executions too. List of reusable
resources maintains a set of concepts from the domain ontology, especially filled forms and
documents resulting from already processed services. Data repositories are used for actual
storage.

Citizen connected to the Access-eGov is authenticated and authorized to access his/her profile
within the UPM component. It is to keep secure access to Personal Assistant Client for
citizens who decide to create user profile and keep their sensitive data on Access-eGov
platform. The authentication method will meet requirement set by law for keeping and
providing such data by information systems.

Moreover the component provides forms that allow users to provide different types of
credentials that are processed by the security module and passed on to government services.

9.2.1.2 Component API
The component interacts directly with the user and does not expose any API usable by the rest
of the platform.

9.2.2 Goal selection component

9.2.2.1 Component name and goal
The proposed short name for the Goal Selection Component is GS.

This component is responsible providing user interface for navigation and selection of life
events, goals and services. Two main possibilities of goal selections are supported for the
user. The first is full-text search of goal/life events or services. The second one is browsing of
goals from the organized structure (catalogue). The component should also enable to display
details of those entities in a user comprehensible manner.

• Full-text searching allows identification of desired life events or goals based on matching
contents of non functional properties containing human language descriptions to a list of
keywords given by the citizen. Every result in the result set shows a short excerpt from the
matched text.

Properties of services and goals that can be matched are as follows:

• Explicit keywords, a title and primary description of goals/life events. Life events and
goals are mixed in the result list.

• Selected functional properties of a goal (like outputs) can be also matched e.g. documents
produced matched by title or descriptions. In such case, an indication which property
leads to its matching is present.

On the other hand the goal browsing enables to select a single goal/life event from a
hierarchical catalogue. One non-functional property associates a goal or any of its outputs to
one of taxonomy classes that are defined in goal and domain ontologies. The hierarchical
structure of those classes forms a base for the catalogue.

9.2.2.2 Component API
The component interacts directly with the user and does not expose any API usable by the rest
of the platform.

FP6-2004-27020 Page 40 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

9.2.3 Visualisation and Data Entry component

9.2.3.1 Component name and goal
The proposed short name for the Visualisation Component is VN.

This component implements functionality related to visualisation and interaction during the
whole process of scenario execution with citizens. In particular the below listed are types of
tasks that are considered.

Displaying information related to selected goals/scenarios. The component should enable to
display details of selected entities in a user comprehensible manner. The details include
general information about goal/service, procedure description, contact information, required
documents, payment conditions, etc.

Visualising workflow structure of LE scenarios/composite services. The citizen is able to see
overall process of the scenario. The list of services must be shown with corresponding input
and output documents which are required for the execution process.

Visualising state of (atomic/composite) service execution. The citizen must be able to see the
current state of the execution. Many of the services takes long time and the disconnection of
the citizen from the Access-eGov system must be allowed during the execution in any state.
Selecting particular services if many of them are used to fulfil the selected goal. There can be
more services discovered to fulfil the goal. The citizen must be able to select from the list of
services one that will be executed afterwards.

Entering data that is matched to goal preconditions before forming a workflow structure that
can be browsed by the user. The citizen is provided by a input form to enter goal
preconditions if they are needed.

Constructing and allowing the citizen to fill in data forms that are then feed to executed
services. Similar interaction takes place during traditional (offline) service execution.

9.2.3.2 Component API
The component interacts directly with user and does not expose any API usable by the rest of
the system.

9.3 Software components sequence diagrams
Following sequence diagram shows the interactions of the citizen and the components of the
MC-PAssist module in the Access-eGov platform. The MC-PAssist components do not have
any API usable by the other components of the platform, but their interactions with the rest of
the system are defined here. The interactions clearly identify the functionality of each
component from the MC-PAssist module.

FP6-2004-27020 Page 41 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

sd Sequences

Citizen UPM GS VN Discovery module Scenario
Execution module

System Core
Components

Data Repositores

1.
Logon

2.Logon result

3.Set / modify personal data
Set / modify personal data

Modification
resultReturn modfied presonal data description

4.Browse goals

5.Get Goals(Nonfunctional Parameters)

6.Filtered list of goals

7.Display Goals list

8.Full text search(Query) 9.Search LE / goal / service (Query, Nonfunctional Parameters)

10.Return matching LEs / goals / services

11.Display matching LEs/Goals/Services list

12.Display entity details (selected LE / goal / service)
Get relevant data(selected: LE / goal / service)

data relevant to a LE / goal / service data
Display detailed information relevant to LE / goal / service

13.StartGoal

StartGoal 14.Get relevant data(Goal)

Get data from user profile or previosly executed
scenariosResloveGoal

ComplexScenario

GoalWorkflowDetails

Visualize
Workflow

15.Resume Goal
Get inprogress scenarios

List of goal execution

16.Continue selected process Get workflow details

Visualize
Workflow

17.Start Service

18.Get Service Inputs

19. Display Input Data Form

20.Start Service(Input Data)
21. Update Profile

UpdatedProcessStatus

22.Visualize Workflow

Figure 15 Sequence diagram for personal assistant

Description of sequences follows:

1) Logon. Citizen logs on to the system through the UPM component. Citizen passes its
authentication data (username and password) to the UPM component.

2) Logon result. The UPM component informs citizen about successful or not successful
authentication of the citizen. Unsuccessful logon could lead either to create a new user
profile or to publish some general security information. Successful logon allows citizen to
use the Access-eGov functions.

FP6-2004-27020 Page 42 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

3) Set/Modify personal data. The citizen can either create new or update own user profile.
The UPM component provides forms for filling personal data. The data are passed to DR
component which is responsible for storing it in the data repository. The return from the
UR component gives the information about successful or not successful access to the data
repository. The UPM component informs the citizen about storing the personal data and
gives general privacy policy information.

4) Browse goals. Citizen is requesting the catalogue of goals from the GS component. The
UPM component prepares the hierarchical list of goals that can be viewed and browsed in
a user suitable manner.

5) Get goals. The GS component interacts with components from the Service discovery
module. The components in the module are responsible to for retrieving all life events and
structuring them to the hierarchical catalogue according taxonomy of the domain
ontologies.

6) Goals. The components from the Service discovery module return the hierarchical list of
goals to the GS component. The GS component processes the list for publishing to the
citizen.

7) Display goals. The GS component prepares the view screen from the hierarchical list of
the goals discovered by the components of the Service discover module. The view screen
represents the catalogue of the goals that a citizen can use for browsing.

8) Full-text search. The citizen sends a query to search for goals (or services) to the GS
component. The query is a simple keyword that could be matched by some properties
assigned within the goals (or services) stored in the ontologies.

9) Full-text search goal/service. The GS component interacts with the components from the
Service discovery module. The components in the module are responsible for matching
the search query (and non-functional properties) and preparing the result list of goals (or
services).

10) Return Goals/services. The components from the Service discovery module return the
list of matched goals (or services) to the GS component.

11) Display matched goals/services list. The GS component prepares the view screen from
the result list of the goals (or services) discovered by the components of the Service
discovery module through matching entered keywords. The view screen shows the result
list with the details of matching properties and the user can select one of them for
execution or examination.

12) Display entity. The User wants to see details regarding selected goal or service. VN
component retrieves data related to selected entity from DR and prepares an information
page compiled from non-functional properties and displays it to the user.

13) StartGoal. When the citizen orders to execute displayed goal a new instance of process is
created at the execution module. The citizen expects the VN component display
browsable workflow of services for the selected complex goal. The VN retrieves data
needed for visualization from the execution module.

14) GSE component gets complex Goal definition and data from user profile so it can build
the process context. Then it invokes service discovery module in order to obtain a
composite service.

15) Resume goal. Execution of a goal usually takes long time and user can be disconnected
from the system during the execution plan. After returning to the system user is able to

FP6-2004-27020 Page 43 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

resume the executed workflow to continue next steps of the action plan. First, the user has
to choose which of already process instances he/she would like to continue.

16) Continue process. The VN component is asked by the user to resume selected process.
As in case of new execution GSE component provides workflow details which are then
visualized, so that the user can continue interaction with the process.

17) Start service. While in execution of Goal user may decide to execute a particular service.

18) Get inputs. VN asks GSE for list of input information pieces needed for a service. Part of
them can be inferred from the process context.

19) Fill form. Basing on the missing information report from GSE, VN generates a input form
which is displayed to the user to fill. Fields inferred from process context are already
filled.

20) Execute service. Input information is passed on to GSE which executes the service.

21) Update profile. New information about the user, extracted from the user profile updates
the user profile. Then the information about process update is returned to VN.

22) Visualise scenarios. The VN component provides view screens for the citizen to display
details about execution status of the whole scenario and each its single step. The
component keeps track of the execution during the whole process and is able to display
historical or current data to the citizen in any time the citizen is connected to the system.

10 System core module

10.1 Module name and functionality
The proposed short name for the System Core Module is MM-SysCore.

The system core module is responsible for the interaction with the user of the Access-eGov
platform and also for tasks, which are relevant to the core platform functionality. That means
manipulation with ontologies, connections management and security issues.

FP6-2004-27020 Page 44 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Service annotation

Service discovery

Service composition

Scenario execution

Personal assistant

Core services

Ontology manipulation

WS connection

P2P connection

Notification

Security management

«include»

«include»

«include»

«include»

«include»

System core module

Repository management

«include»

Figure 16 Use cases system core components

The description of actors follows:

• Service annotator Service annotator is an actor responsible for annotation of services
with functional and non-functional properties. It uses directly ontology manipulation
service (in case ontology has to be created, configured or deleted) and also services of
repository management (loading and saving the descriptions of goals and services as
well as the choreography interfaces of complex goals). The notification service is used
in case the description of some goal was changed. The aim is to distribute notification
of goal changes to those service providers whose services was earlier described
according to this goal. By using the service of WS connection it can access and use the
services of all platform components.

• Service discovery. Service discovery is responsible for discovery of services
according to their properties. This actor uses repository management functionalities
for loading the descriptions of goals, services, ontologies and mediators needed during
the semantic discovery process of services. It uses also P2P connection manager
functionalities (in case of accessing different P2P nodes) and also security
management (in case the manipulation with confidential data is needed).

• Service composition. This actor is responsible for composition of services. It uses
services of repository management for loading orchestration interfaces of complex
goals.

FP6-2004-27020 Page 45 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• Scenario execution. This actor is responsible for executing services according to
scenario. It uses repository management in case the process model needs to be saved
or reloaded. The notification service is used in case a time out of a Web Service was
exceeded. The security manager is used in case the confidential data are processed.

• Personal assistant. Personal assistant represents GUI for citizen and business users.
By using the service of WS connection it can access and use the services of all
platform components. Plus the service of repository management (in case of obtaining
the catalogue of goals) and security management (in case the processing of personal
data is required) are put to use by Personal Assistant.

The description of use cases follows:

• Ontology manipulation. In case the manipulation with ontology (or its part) is
required. Manipulation with ontology consists of importing it into memory, deleting
and updating. This use case is covered by the SWS ontology manipulation component
(described in the next section).

• WS connection. In case Personal Assistant or Service annotator need to use the
platform components the Access-eGov system provide them such opportunity. The
WS connection manager component (described in the next section) provides such
communication.

• P2P connection. If the incorporation of a different node is required in the discovery
process, the Access-eGov system has to be able to access it. The P2P connection
manager component (described in the next section) allows to use P2P technology for
such a connection.

• Notification. The Notification service component (described in the next section) is
responsible for the notifications distribution among the system. It runs e.g. when a
time out of the service execution has to be distributed to the Personal assistant.

• Security management. If personal data or confidential data has to be processed the
security management is needed. The bellow-described Security component is
responsible for such security management.

• Repository management. When the manipulation with the repository data is required,
such manipulation is handled by this core service. It enables reading and writing the
repository.

10.2 Software components
The components defined in this module are:

1) SWS ontology manipulation component

2) WS connection manager component

3) P2P connection manager component

4) Data repository management

5) Security component

6) Notification service component

FP6-2004-27020 Page 46 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

10.2.1 SWS ontology manipulation component

10.2.1.1 Component name and goal
The proposed short name for the SWS Ontology Manipulation Component is SWSOM.

The purpose of this component is to allow the manipulation with ontologies. Ontologies are
saved in the repository (persistent layer). So, the SWSOM uses API object model for semantic
web service ontologies and load the ontologies into these objects to the memory (API can be
used also in personal assistant and annotation services).

10.2.1.2 Component API
There is only one API function for the SWS ontology manipulation component. It allows
required manipulation with ontology by importing it into memory. The input to this API is
identifier of an entity. The output is the identified entity - ontology (the aim of this API is to
allow manipulation with ontologies).

Function Description

Get entity (entity id): Entity Load requested entity -ontology- from the repository
to allow manipulation with it. Mostly, the service
annotator will be accessing this function of the SWS
ontology manipulation component, in case the
necessary changes have to be performed, due to
environment changes (e.g. a new law).

Inputs: entity id - id of the entity – requested ontology
is identified in the repository by a unique identifier
(URI or IRI)

Outputs: Entity – requested ontology is loaded into
data memory object

10.2.2 WS connection manager component

10.2.2.1 Component name and goal
The proposed short name for the WS Connection Manager Component is WSCM.

The goal of the WS connection manager software component is to create web service entry
point which makes infrastructure components available to Access-eGov personal assistant and
annotation services. The interface of this component consists of selected interfaces of the
platform components (Discovery, Execution, and Composition modules). The main
functionality of this component is to support marshalling and unmarshalling of parameters
and return values from and to the web service protocol (which is used for communication
between the AeG platform and clients).

10.2.2.2 Component API
WS connection manager exposes API of internal infrastructure components, i.e. Discovery,
Execution and SWS ontology manipulation components.

FP6-2004-27020 Page 47 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

10.2.3 P2P connection manager component

10.2.3.1 Component name and goal
The proposed short name for the P2P Connection Manager Component is P2PCM.

The goal of the P2P connection manager software component is to create P2P entry point
which makes infrastructure components available to other Access-eGov modules.

The distribution of request is useful during the semantic discovery process of services. This
request distribution allows the services registered in different nodes of the Access-eGov
infrastructure to be found and then also used during the execution.

10.2.3.2 Component API
There is only one API function for the P2P connection management component. In general, it
allows the distribution of requests among the nodes in the overall infrastructure in the P2P
network. The input to this API is a request (e.g. description of goal) and the output has a form
relevant to this input (e.g. service description in case the request is a goal).

Function Description

Request P2P repository/service Request repository/service from remote nodes in the
Access-eGov P2P infrastructure. If the distribution of
these requests is needed it is managed by the P2P
connection manager component thru this function.
Other components do not handle with any aspects of
such management and access only.

Inputs: Repository/service request that have to be
distributed among Access-eGov infrastructure. Most
likely only one request will be distributed by one call
of this function.

Outputs: Requested output from the different nodes
than the node which initiated the distribution. There
might be a lot outputs – so the format of the output of
this function should be a List

10.2.4 Data repository component

10.2.4.1 Component name and goal
The proposed short name for the Data Repository Component is DR.

The goal of the Data repository software component is to create entry point (interface) which
makes data repositories in persistence layer available to Access-eGov infrastructure
components.

Therefore, this component has to provide functions, which allows manipulations with all
entities, i.e. with goals, services, ontologies, mediators, orchestration interfaces and profiles.
Where the manipulation means insertion of a new entity, updating of an existing entity,
deletion of an existing entity and selection of an entity.

FP6-2004-27020 Page 48 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

10.2.4.2 Component API
There are four API functions provided by Data repository component. Their functionalities
allow insertion, updating, deletion and selection of entities. The input to this API are entities
for insertion, updating (entity with their repository ID) and deletion (entity their repository
ID), or query in case of selection. The outputs are inserted entity (entity and their new ID in
the repository), updated entity, deleted entity and a list of selected entities respectively.

Function Description

Insert(Entity): Entity Insert entity into appropriate data repository in the
persistence layer according specific entity type in case
a new entity emerges and it has to be stored. It
involves also storage of the current process states
during the execution, but of course this function will
be used in case a new service (its description), new
goal, new ontology, new mediator or new user profile
will be created. It is expected that this situation will be
arising quite often in the AeG system.

Inputs: Entity to insert – all entity kinds mentioned in
the previous description which have to be inserted into
date repository (in the AeG persistent layer).

Outputs: Inserted entity – entity with the ‘flag’ giving
a signal that the entity was stored successfully into
data storage in the persistent layer can be its ID (e.g.
IRI).

Update(Entity): Entity Update entity in appropriate data repository in the
persistence layer. This function will be used in case an
already existing entity has been loaded from the
repository and the necessary changes were done on it.
Then the update of the old state in the repository is
needed and the handling with this update is up to this
function of the Data repository component. It is
expected that this situation will be arising quite or very
often in the AeG system.

Inputs: Entity to update – entity, which was changed
in the memory and these changes have to be updated
in the repository.

Outputs: Updated entity - entity with the ‘flag’ giving
a signal that the entity was updated successfully.

Delete(Entity): Entity Delete entity from the appropriate data repository in
the persistence layer. This function will be used in
case the entity in the repository will be not needed
anymore. It involves mainly old service and goal
descriptions and states of the execution processes
which will be not used anymore (e.g. user cancels the
process). Note, that the decision whether some entity
will be deleted does not depend on the Data repository

FP6-2004-27020 Page 49 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

component or even on this function. It is expected that
this situation will be arising quite often in the AeG
system.

Inputs: Entity to delete – The entity which can not be
used anymore (e.g. because new entity replaces their
function, or this entity is not actual etc.) so there is no
reason to leave it in the storage in the AeG persistent
layer any longer.

Outputs: Deleted entity - entity with the ‘flag’ giving
a signal that the entity was deleted successfully, so
there is no such entity in he storage in the AeG
persistent layer.

Select(Query): Entity Select entities from appropriate data repository
according specific entity type and query request. This
function will be mainly used in case the searching
process for a specific entity is being performed in the
AeG system. The query should address the type of
entity for selection. It is expected that this situation
will be arising very often in the AeG system.

Inputs: Query request – most likely a request which
arises during the process of service discovery. The
query is matched against the descriptions of goals and
services.

Outputs: List of selected entities – entities which are
appropriate to the query are selected and returned a an
output from this function.

10.2.5 Security component

10.2.5.1 Component name and goal
The proposed short name for the Security Component is SEC.

Security software component checks user credentials (together with information about the
user’s profile and the security scheme as required by a public agency’s service) and issues
security tokens that public agencies may use as temporary Single-Sign-On authentication.

Security in Access-eGov is not one-dimensional but divided into two equally important parts.
Communication Security involves securing all communication channels and also securing a
correct identification of communication partners. Basic access control with only the ability to
allow or deny access based on used protocol or IP of the client also falls into this category.
While these requirements are very important, their implementation is simple. There are
encrypted versions or encryption add-ons to all of the standard communication protocols
Access-eGov uses.

The challenging part of the Access-eGov security architecture is the system security. Access-
eGov is in the process of developing a novel system architecture revolving around the notion
of privacy preferences. With privacy preferences, users can specify which of their personal
data can be transmitted to the platform and under which circumstances. A user for example
could accept sharing of his credit card number only through encrypted channels and only if

FP6-2004-27020 Page 50 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

the receiver is a financial institution. A number of technical implementation models are
currently researched, that could further strengthen privacy and flexibility by placing central
components of the security component in a SOA themselves which in turn allows the use of
the same semantic components to string together a chain of security services.

10.2.5.2 Component API
Component API will be specified in the subsequent project reports (D4.1, D4.2 and output of
T5.3). The exported functionality of this component however, will be rather simple.

Function Description

Authorize(User, Resource):
AuthorizationToken

Evaluates if a particular user is allowed to access a
given resource

Inputs: User model, containing all necessary
information including privacy preferences, Resource
to which access is sought

Outputs: AuthorizationToken

10.2.6 Notification service component

10.2.6.1 Component name and goal
The proposed short name for the Notification Service Component is NS.

Notification service component distributes internal messages required to coordinate activities
of Access-eGov Infrastructure components and notifications to clients via connection
manager web service interface (examples of the messages include notification when some
data structures are changed or timeout notifications generated during the execution of scenario
processes). Each AeG component should be able to use internal message delivery service to
achieve asynchronous communication inside the AeG infrastructure. This offers the
possibility to adopt requirements to modify the execution semantics of the AeG system that
could later arise. Flexible asynchronous communication supposes the temporal and referential
decoupling of the send and receives operations. One of the possibilities how to achieve such a
decoupling is to use a communication mechanism based on shared space.

Beside the asynchronous communication, the NS component offers also the notification
service. In the process of notification we distinguish producers (event generators) and
consumers (listeners). Events are generated by producers and the system components can
register interest to be informed on specific events, whereby they specify also the manner, how
to react on the event. As the Access-eGov system is a distributed system based on peer-to-
peer infrastructure, the event delivery system has to be also distributed.

10.2.6.2 Component API
Function Description

Write(message, Shared Space):
boolean

Write a message to the shared space, where it will be
available to other AeG components. This operation
together with read separates temporally and
referentially the communication processes and enables
asynchronous communication.

Inputs: message – set of serialised objects that

FP6-2004-27020 Page 51 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

represent data to be send from an AeG component to
the potential receivers inside the AeG infrastructure;
Shared Space – distributed blackboard mechanism
accessible for all AeG components

Outputs: True in case of successful write operation
into the shared space, otherwise returns false

Read(template, Shared Space):
message

Read a message from the shared space according a
template message. This operation together with the
write separates temporally and referentially the
communication processes and enables asynchronous
communication.

Inputs: template – set of serialised objects that
represent template data to be read from the shared
space (if the data are not available, the caller is
blocked until such information occurs in the shared
space); Shared Space – distributed blackboard
mechanism accessible for all AeG components

Outputs: message - set of serialised objects that
composes a message in the shared space and
corresponds to the defined template.

Notify(Shared Space, template,
Listener): boolean

Register a consumer (Listener) for handling of a
specific event (Event) generated by the producer
(EventGenerator). In case that the producer creates an
event, all listeners (event consumers) are notified via
distributed event delivery mechanism about occurred
event.

Inputs: Shared Space – distributed blackboard
mechanism accessible for all AeG component;
template – set of serialised objects that represent
template data, which writing into the shared space
generates the notification; Listener – object specified
by the consumer interested into the message
occurrence specified by the template

Outputs: true in case of successful register operation,
otherwise returns false

Register(EventGenerator, Event,
Listener): boolean

Register a consumer (Listener) for handling of a
specific event (Event) generated by the producer
(EventGenerator). In case that the producer creates an
event, all listeners (event consumers) are notified via
distributed event delivery mechanism about occurred
event.

Inputs: EventGenerator – object that represent the
event generator; Event – event that can be produced by
EventGenerator and that is interesting to the
consumer; Listener – object specified by the consumer
interested into the Event, that should be notified about

FP6-2004-27020 Page 52 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

the Event occurrence

Outputs: true in case of successful register operation,
otherwise returns false

10.3 Software components sequence diagrams
Interactions with the System module components are depicted in the sequence diagrams of the
referenced modules.

11 Conclusions
In this document, we outlined the detailed functional description of platform components,
which were identified to fulfil the user requirements followed from the related analysis phase.
Based on the results of the user requirements analysis (described in D2.2) and the overall
architecture of the Access-eGov system (described in D3.1) we identified required software
components with required set of functions and grouped them logically into software modules.
Each module is responsible for specific functional task within the Access-eGov architecture.

We described the components at the logical level in terms of their names, functionality and
application programming interface, but with sufficient details to build modules related to
users requirements. Modules are then described also at the logical level in terms of names,
included components and their interactions. We used UML models (use case diagrams and
sequence diagrams) to describe the functionality and interactions of each module in a
common semi-formal way.

This specification will be used for further development (design and implementation) phases.
Now we have a clear understanding about functionality of the system and the details about
each software components. The following future software development tasks of this project
continue with the development of the Access-eGov system:

T4.1 – According to the presented system architecture and functional description on the
logical level the structure and the interface each software component is designed. The design
must be in the sense of selected implementation technology.

T4.2 – Detailed specification and design of the security issues for the Access-eGov system
functionality.

T5.1 – Design of specified personal assistant software components (structure and interface).

T5.3 – Detailed specification and design of the proposed security components in this report.

T7.2 – Development of a guideline for the semantic mark-up framework and the service
annotation process.

T7.3 – Design and implementation of the semantic mark-up framework and the service
annotation process.

FP6-2004-27020 Page 53 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Annex A: Used Technologies
Since the WSMX platform currently is not widely used in industrial projects, stable figures
describing its real-world performance do not exist. Its use in several research projects1 so far
is not targeted at performance, but functionality. Early industrial adopters, like NIWA or
Sybernet, did not provide benchmark data yet. Therefore we have to assess the performance
issues with regards to the WSMX platform.

Potential performance bottlenecks exist above all in the data repositories and the semantic
components. Communications and Resource Manager and Parser components are
straightforward components with a linear complexity. The data repositories and parts of the
semantic components on the other hand are the most complex.

Access-eGov will use Object-relational-Mapping (ORM) concepts for storing the Data
Repositories’ data which are quite common and proven nowadays. The most likely choice for
us, hibernate, has a large user-base with quite demanding applications and web sites. Many of
those users report great performance and scalability on relevant forums. Official benchmarks
do not exist for hibernate for a number of reasons2.

The letter sent on March 17, 2007 from the DERI expert Thomas Haselwanter describes
actual situation of benchmarks and performance tests for WSMX:

“...nobody has made any benchmarks for WSMX yet, nor am I aware of any plans for
something like this. Frankly, nobody was really interested in this in any of the several EU
projects where we used this platform, since everybody only cared about the functional
requirements that WSMX could fulfil. Performance issues were always considered to be part
of a much later stage when the results of this research would be commercialised at some
point. With that being said and out of the way, my gut feeling tells me that the single most
critical hotspot in terms of performance is the reasoner since it’s used extensively inside
practically every component of WSMX. We’ve been unsatisfied with the performance (among
other things) of the reasoners we’ve been using up to now, so we’re implementing our own
reasoner called IRIS, of which the first version has recently been released. Again no
benchmarks yet, but when benchmarks appear they will probably appear for the reasoning
subsystem rather than for all of WSMX, because the measurement that can be taken here are
more meaningful since pure reasoning doesn’t involve a lot of side effects (network and
others) that WSMX is exposed to, while still playing a key role inside WSMX to have a real
effect on the overall performance...”

Other components needed for Matching or Discovery also have a linear complexity apart
from the Reasoner. Even DERI, the creators of WSMX, can see the performance problems in
only the Reasoner component as they conveyed in email discussions. And the Reasoner
currently used for WSMX indeed had performance problems, which lead DERI to implement
their own Reasoner3.

1 DIP, SEKT, Knowledge Web, Cocoon, SUPER, SWING, Tripcom, SemanticGov, SAOR, KMI
2 http://www.hibernate.org/157.html
3 http://iris.deri.at

FP6-2004-27020 Page 54 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

A.1 Benchmarks and performance tests
Having analysed the AeG architecture, we have concluded that the performance of the whole
AeG platform is mainly dependent on the Discovery module. Components of this module,
namely Matching and Filtering, are invoked either explicitly from the Personal Assistant
client to find services, or from the Execution module to resolve unresolved sub-goals during
the scenario execution. The performance of the Matching and Filtering components depends
on the implementation of the Reasoning component and on the implementation of the Service
and Ontology repositories. Generally, we can say that from the performance and scalability
point of view, highly scalable and efficient Reasoning component is crucial for all semantic
based applications; not only for the AeG platform.

It should be noted that implementation of an efficient reasoner covering all the variants of the
Web Service Modelling Language is out of the scope of the AeG project. For this reason we
will reuse the existing implementations. The survey on existing reasoners, which covers
requirements for various WSML variants, can be found in [D16.02 WSML Reasoning
Implementation]. The published benchmarks performed on these reasoners are based on
general settings and test mainly querying on large instance sets and atomic operations like
subsumption of concepts. But in the context of the AeG platform (and the semantic services
generally), Reasoner is used to compute a degree of matching between functional and non-
functional properties of goals and services specified as the logical expressions.

This application of the reasoner in the AeG system, where the terms of one logical expression
defined for the goal are matched to the terms of another one defined for the service (WSMO
conceptualisation), represent a more complex problem than the problems measured by the
existing benchmarks. Therefore, the results of the existing benchmarks (corresponding rather
to “atomic” operations) may not be fully relevant for the AeG implementation.

Another important issues, which can influence the performance measuring, are related to
constraining the expressivity of the logical language for the particular domain and to the fact
that the matching implicitly takes into consideration not only the logical inference, but also
mediation (i.e. if an instance of a concept from one ontology can be transformed to instance(s)
of another one).

Note, that within the scope of the AeG pilot applications, operational conditions with a
limited number of services and goals will not allow to estimate high load performance of the
AeG system. For these reasons we have designed our own benchmarks and we will carry out
AeG performance tests in the following way:

• To analyse the domain ontologies and identify common design patterns which will be
used to constrain expressivity of the logical language for testing.

• To implement generator used to generate constrained logical expressions for
functional and non-functional properties of goals and service profiles.

• To generate a testing set of the services and goals (this includes generation of
referenced domain ontologies).

• To test a composition of the components for semantic matching (i.e. Matching
component, Reasoning component, Mediation component and Filtering Component
without the Data Repository access) with randomly selected goals and with a different
number of registered services to estimate performance and scalability of reasoning and
mediation. These tests should cover both "simple" semantic matching and "rich"
semantic matching with randomly generated inputs (see chapter 7.2.2).

FP6-2004-27020 Page 55 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

• To test the whole functionality of the Discovery module, i.e. Matching component
together with the access to the service repository.

In this way, we can precisely control operational conditions and use artificial data to estimate
the performance and scalability of the platform for high load applications with hundreds of
goals and thousands of registered services.

A.2 Scalability and simultaneous access
Besides of the performance issues related to the Discovery module, we have additionally
identified that the scalability of the whole system is mainly influenced by the scalability of the
Service and Ontology repositories and the scalability of the Goal and Scenario Execution
component. Scalability of the repositories will be directly tested within the scope of the
performance tests described in the previous chapter (i.e. we can measure storage scalability
with storing and querying on a generated large set of services which can refer to a large set of
concepts from artificial domain).

The implementation of the Goal and Scenario Execution component is mainly important from
the point of view of simultaneous access. It has to be noted that in the context of the AeG
project with hybrid scenarios, "real time" invocation of the electronic services will be mixed
with discontinuous long-lasting transactions with the traditional services. It means that the
process of the execution will be frequently suspended and the system will wait for the user
interaction (so, for instance, it is important to take into consideration not only the efficient
interpretation of the process activities but also the updating and restoring of the process
execution).

Since it is planned that this component will be implemented from scratch and will be not
based on the WSMX components, we have designed our own scalability tests, similarly as for
the Discovery, in the following way:

• To analyze workflow and dataflow patterns used in the hybrid process models of the
life event scenarios.

• To implement generator which will generate process models with a various
configuration of the activities (i.e. branching, looping, concurrent execution,
invocation of the web services, and interaction with the traditional services) according
to the identified patterns.

• To simulate concurrent execution of randomly selected processes and measure the
scalability of the number of concurrent processes.

To conclude, our strategy for measuring the scalability and performance of the whole AeG
system is summarized in the table below.

Component Tested Targeted issues

Matching,
Filtering

Directly (on a generated set of
services and goals)

Scalability depending on the
number of services, number of
ontology concepts, matching
efficiency, concurrent access.

Reasoning Indirectly through Matching and
Goal and Scenario Execution

Matching efficiency

FP6-2004-27020 Page 56 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Resolving,
Chaining

Indirectly through Matching

Data repository Directly (Service and Ontology
repositories on the generated set of
the services and goals)

Scalability depending on the
number of services, number of
ontology concepts, concurrent
access

P2P Connection
Manager

Indirectly through Data repository

Goal and
Scenario
Execution

Directly (simulation with generated
processes)

Scalability depending on the
number of users, concurrent access,
reasoning efficiency (indirectly -
querying of the process states)

FP6-2004-27020 Page 57 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

References
[1] D3.1 Access-eGov Platform Architecture

[2] D2.2 User requirement analysis & development/test recommendations

FP6-2004-27020 Page 58 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Glossary
The following terms are used within this report. In case the term was defined in another
Access-eGov deliverable the reference to the source is included.

Access-eGov annotation services: A web-based application that is not an integral part of the
Access-eGov infrastructure. Its main purpose is to allow domain experts to semantically
describe their electronic/traditional services using their respective public service ontology.
This will explicitly involve annotating traditional web sites as well. (D3.1, p. 44)

Annotated service: Semantically described service, i.e. service extended with references to
some semantic models, where semantic model means within the Access-eGov project
ontology or concept in the ontology.

Architecture: The overall design or structure of a software application

Chaining component (CHAIN): CHAIN composes services by recursively regarding the
effects and outputs of one service as the preconditions and inputs of a following one until a
desired effect is reached. (D3.2, p. 28)

Complex goal: An internal process model which consists of abstract activities (goals). (D3.2,
p. 27)

Composed services: This term specifies composed activities which fulfil goals in the generic
scenarios. The term activity usually means either electronic service or traditional service (an
atomic activity). But in case the goal from generic scenario can be resolved only during the
time of execution (some inputs depends on some of the previous obtained outputs), the
activity has an abstract nature. (D3.1 p. 36)

Composition: A process of orchestration of the existing services to the new scenario to solve
complex goal. (D3.2, p. 24)

Data repositories: Data repositories store user various data objects used by other
components, where various data objects means life events/goals, service description,
ontologies, process context and security data. (D3.1, p. 44)

Discovery: A process of searching goals and services for the process model composition.
(D3.2, p. 16)

Electronic service: A service which is performed electronically.

Execution: A process of execution of the retrieved service or workflow (composed service).
(D3.2, p. 30)

Filtering component (FIL): FIL uses non-functional properties to additionally filter or
reorder discovered services according to the requester preferences. (D3.2, p. 19)

Full-text search component (FTS): FTS provides an interface to the full-text search of
services and life events/goals.

Functional properties of goals and services: These properties describe inputs, outputs,
preconditions and effects of the service (IOPEs). (D3.1. p. 36)

General descriptions: General descriptions are properties which could include contact details
for persons that are responsible for the service’s operations and could be part of the non-
functional properties. (D3.1, p. 22)

FP6-2004-27020 Page 59 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Goal: A goal specifies those objectives that a client might have when consulting a service,
including functionalities that a service should provide from the user’s perspective. (D3.1, p.
35)

Information consumer related module (MC): A module which specifies a goal and
executes the retrieved services or a module which allows general access management of the
Access-eGov platform services. (D3.2, p. 10)

Information provider related module (MP): A module which copes with the main tasks of
information providers (annotating/registering services and building goals and complex goals).
(D3.2, p. 10)

Life event: A life event denotes a specific situation (i.e. event) in the life of a citizen or a life
cycle of an organization that requires a set of public services to be performed. (D3.1, p. 34)

Life events and goals management component (LEGM): LEGM provides the functionality
for description of atomic (simple) goals and for composition of these goals to the more
complex generic scenarios to specify life events. (D3.2, p. 14)

Life events/goals repository: Manages goals and generic scenarios associated with the life
events. (D3.1, p. 44)

Matching component (MAT): MAT provides matching based on the outputs and effects or
matching based on rich semantics. (D3.2, p. 18)

Mediation component (MED): The role of the MED is to reconcile the semantic and data
heterogeneity that can appear during discovery, composition or execution. (D3.2, p. 20)

Mediation: A process of reconciliation of the semantic and data heterogeneity that can appear
during discovery, composition or execution. (D3.2, p. 20)

Non-functional properties: These properties describe the semi-structured information
intended for the requesters for service discovery, e.g. service name, description etc. (D3.1. p.
36)

Notification services component (NS): NS distributes internal messages required to
coordinate activities of Access-eGov infrastructure components and notifications to clients via
connection manager web service interface.

Ontology repository: This repository stores domain ontologies and associated mappings for
mediators. (D3.1, p. 44)

P2P connection manager component (P2PCM): P2PCM creates P2P entry point which
makes infrastructure components available to other Access-eGov modules. (D3.2, p. 47)

Persistence layer: provides interfaces to store and retrieve various data objects used by other
components. (D3.1, p. 44)

Personal assistant client: A component which manages the user profile repository and it may
additionally manage repositories intended for the caching of other data objects like life events
and goals in order to improve user interface responses. (D3.1, p. 45)

Public administration tools: Tools which are needed by public administration institution to
annotate their services, build goals as well as complex goals.

Public agencies: Agencies which either provide their customers with public administration
services or mediate between them and public administration institution.

Reasoning component (REAS): REAS allows to explore the domain knowledge about the
input and output types. (D3.2, p. 20)

FP6-2004-27020 Page 60 of 61

 D3.2 Access-eGov Components Functional Descriptions
 Version: 2.0

Resolving component (RES): RES resolves abstract activities (sub-goals) into services by
using Discovery module. (D3.2, p. 26)

Security component (SEC): SEC checks user credentials and issues security tokens. (D3.2,
p. 31)

Security scheme repository: This repository stores user login information and access rights.
(D3.1, p. 44)

Security surroundings: This surroundings includes information who is eligible to actually
use that service, what form of identification is required concerning the privacy policies that
the service itself can offer. (D3.1, p. 49)

Semantic matching: A matching strategy which considers meaning of matched elements
(e.g. functional or non-functional properties of services).

Service annotation component (SA): SA creates service profile, which consists of functional
and non-functional properties. (D3.2, p. 12)

Service Profile: A Service profile specifies what does the service provides from user
perspective and is used by the public administration to advertise services. Service profile
consists of non-functional and functional properties. (D3.1. p. 36)

Service repository: This repository stores descriptions of web services, traditional services
and composed services registered for specific orchestrated scenarios. (D3.1, p. 44)

Software component: A software component is a piece of software that performs a specific
technical task. Software components are grouped in software modules. (D3.2, p. 7)

Software module: A software module is a piece of software that performs a specific
functional task. (D3.2, p. 8)

SWS ontology manipulation component (SWSOM): SWSOM is in-memory object model
for semantic web services ontologies. (D3.2, p. 46)

System core component: A component which is responsible for the interaction with the user
of the Access-eGov platform and also for tasks, which are relevant to the core platform
functionality. (D3.2, p. 43)

System management related module (MM): A module which cope with the core
functionality of the Access-eGov platform. (D3.2, p. 10)

Traditional service: A service which is performed without the electronic support.

Visualisation and Data Entry component (VN): VN is responsible for visualisation and
interaction during the whole process of scenario execution. (D3.2, p. 40)

WS connection manager component (WSCM): WSCM creates web service entry point
which makes infrastructure components available to Access-eGov personal assistant and
annotation services. (D3.2, p. 46)

FP6-2004-27020 Page 61 of 61

	Introduction
	Objectives and scope
	Document structure

	Definitions
	Component definition
	Module definition

	Logical architecture
	Modules
	Information provider related modules
	Information consumer related modules
	System management related modules

	Service annotation module
	Module name and functionality
	Software components
	Service annotation component
	Component name and goal
	Component API

	Life events and goals management component
	Component name and goal
	Component API

	Ontology management component
	Component name and goal
	Component API

	Service discovery module
	Module name and functionality
	Software components
	Full-text search component
	Component name and goal
	Component API

	Matching component
	Component name and goal
	Component API

	Filtering component
	Component name and goal
	Component API

	Reasoning component
	Component name and goal
	Component API

	Mediation component
	Component name and goal
	Component API

	Software components sequence diagram

	Service composition module
	Module name and functionality
	Software components
	Resolving component
	Component name and goal
	Component API

	Chaining component
	Component name and goal
	Component API

	Software components sequence diagrams

	Scenario execution module
	Module name and functionality
	Software components
	Goal/scenario execution component
	Component name and goal
	Component API

	WS Invocation component
	Component name and goal
	Component API

	Software components sequence diagrams

	Personal assistant module
	Module name and functionality
	Software components
	User and profile management component
	Component name and goal
	Component API

	Goal selection component
	Component name and goal
	Component API

	Visualisation and Data Entry component
	Component name and goal
	Component API

	Software components sequence diagrams

	System core module
	Module name and functionality
	Software components
	SWS ontology manipulation component
	Component name and goal
	Component API

	WS connection manager component
	Component name and goal
	Component API

	P2P connection manager component
	Component name and goal
	Component API

	Data repository component
	Component name and goal
	Component API

	Security component
	Component name and goal
	Component API

	Notification service component
	Component name and goal
	Component API

	Software components sequence diagrams

	Conclusions

